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ABSTRACT 

 

EFFECT OF FORCE AND CONFINEMENT ON 

CHEMICAL REACTION KINETICS 
 

 

by 

 

 

Alejandro M. Boscoboinik 

 

The University of Wisconsin-Milwaukee, 2020 

Under the Supervision of Professor Wilfred T. Tysoe 

 

 

 

This work studies model systems that are relevant to understanding the fundamentals of surface 

chemical processes. A Cu(100) single crystal surface modified by methyl thiolate species, formed 

from the adsorption of dimethyl disulfide, is used for modeling the effect of an external force in a 

chemical reaction. Furthermore, 2D-Zeolite is synthesized, characterized and postulated as a 

model system for studying chemistry in confined space. Furfural adsorption on Pd(111) is studied 

under different experimental conditions by means of infrared reflection-absorption spectroscopy. 

Furfural uptake experiments from sub-monolayer to multilayer coverages and sequential heating 

lead to an analysis of conformational changes and tilting angles as a function of coverage and 

temperature. Finally, surface self-assembly processes are explored by means of Monte Carlo 

simulations that produce results with potential use as a general computational model for studying 

the interconnection of distributed particles on surfaces.  

 

 

 

 

 



www.manaraa.com

iii 

 

 

 

© Copyright by Alejandro M. Boscoboinik, 2020 

All Rights Reserved 



www.manaraa.com

iv 

 

To my parents Graciela and Jorge, my brothers, Simon and Anibal, and my partner Tecolota. 



www.manaraa.com

v 

 

TABLE OF CONTENTS 

 

Chapter 1: Introduction ....................................................................................................................1 

Chapter 2: Materials and Methods ...................................................................................................4 

2.1 Introduction............................................................................................................................4 

2.2 UHV Technology ....................................................................................................................4 

2.2.1 UHV Chambers................................................................................................................5 

2.2.2 Vacuum Pumps ................................................................................................................7 

2.2.5 Gas Handling Line and Chemical Purification .............................................................12 

2.3 Fundamentals of the Techniques .........................................................................................14 

2.3.1 Contact mode – Atomic Force Microscope (cmAFM) ...................................................14 

2.3.2 Infrared Reflection-Absorption Spectroscopy (IRRAS) .................................................18 

2.3.3 X-ray Photoelectron Spectroscopy (XPS) ......................................................................20 

Chapter 3: Normal-Stress Induced Mechanochemical Decomposition of Methyl Thiolate on 

Copper (100) ..................................................................................................................................22 

3.1 Introduction..........................................................................................................................22 

3.2 Experimental Methods .........................................................................................................23 

3.3 Results and Discussion ........................................................................................................26 

3.4 Control Experiments ............................................................................................................31 

3.5 Indentation Profiles, Reaction Rates and Pressure Distribution.........................................33 

3.6 Measurement of Reaction Rates and Activation Energies ...................................................34 

3.7 Conclusions ..........................................................................................................................35 

Chapter 4: Lateral - Stress Anisotropy of Mechanochemical Reaction Rates ...............................37 

4.1 Introduction..........................................................................................................................37 

4.2 Influence of Lateral Force in Mechanochemical Reaction Rates ........................................39 

4.2.1 Mechano-tribochemical Reaction Rates in Three Dimensions .....................................46 

4.3 Experimental Methods .........................................................................................................50 

4.4 Results and Discussion ........................................................................................................52 

4.4.1 Angular Dependence of Lateral Force on Mechanochemical Process .........................52 

4.5 Conclusions ..........................................................................................................................58 

Chapter 5: Model System for Studying Chemistry in Confined Spaces – Two-Dimensional 

Silicates ..........................................................................................................................................60 

5.1 Introduction..........................................................................................................................60 



www.manaraa.com

vi 

 

5.2 Experimental Methods .........................................................................................................62 

5.3 Results and Discussion ........................................................................................................63 

5.3.1 Trapping of Noble Gases by an Ultrathin Nano-Porous Aluminosilicate Film on 

Ru(0001) .................................................................................................................................63 

5.3.2 Hexacelsian Synthesis....................................................................................................67 

5.3.3 Hexacelsian Delamination and Characterization .........................................................69 

5.4 Conclusions ..........................................................................................................................72 

Appendix 1: Surface Structural Changes of Furfural on Pd(111) by Means of IRRAS ................73 

A1.1 Introduction .......................................................................................................................73 

A1.2 Experimental Methods .......................................................................................................74 

A1.3 Results and Discussion ......................................................................................................76 

A1.3.1 Furfural Uptake ..........................................................................................................76 

A1.3.2 High Dose Experiments -Formation of Thick Multilayers ..........................................80 

A1.3.3 Experiments on Intermediate Furfural Doses – Formation of Thin Multilayers ........86 

A1.4 Conclusions .......................................................................................................................88 

Appendix 2: Monte Carlo Simulations of Self-Assembled Organometallic One-dimensional 

Wires ..............................................................................................................................................90 

A2.1 Introduction .......................................................................................................................90 

A2.2 Monte Carlo Simulations Model .......................................................................................94 

A2.2.1 Nearest-Neighbor Diffusion ......................................................................................100 

A2.2.2 Introduction of Monomers Over Time (Dosage) .......................................................105 

A2.2.3 Chain Length Distribution ........................................................................................107 

A2.2.4 Information from Real Systems .................................................................................110 

A2.2.5 Scaling Using OSG resources ...................................................................................113 

A2.4 Applications and Future Studies .....................................................................................117 

A2.5 Conclusions .....................................................................................................................118 

Concluding remarks .....................................................................................................................120 

References ....................................................................................................................................122 

Curriculum Vitae .........................................................................................................................130 

 

  



www.manaraa.com

vii 

 

LIST OF FIGURES 

 

Figure 2.1: UHV Chamber Experimental Setup ..............................................................................7 

Figure 2.2: Mechanical pump diagram. ...........................................................................................8 

Figure 2.3: Turbomolecular pump schematic diagram. ...................................................................9 

Figure 2.4: Diffusion pump schematic diagram. ...........................................................................10 

Figure 2.5: Ion pump diagram. ......................................................................................................12 

Figure 2.6: Gas Handling Line diagram. .......................................................................................13 

Figuire 2.7: Schematic of quadrant photodetector showing the laser deflection from the rear surface 

of the cantilever while the tip rasters the surface in different directions, shown in the left and right 

images. ...........................................................................................................................................14 

Figure 2.8: Scanning electron microscopy images of a commonly used commercial n-type silicon 

AFM tip. (a) Side view of the cantilever, (b) top view of the cantilever, (c) and (d) close-up views 

of (a) and (b) respectively. Images were taken in collaboration with Dr. Dustin R. Olson. ..........16 

Figure 2.9: Force distance curve, the green line originating from left (-50 nm to 0 nm) shows the 

out -of- contact regime of the linear lever approach (here the distance axis corresponds to vertical 

displacement, z in nm) which continues until the long-range attractive interaction forces cause the 

tip to “snap-in” until it is balanced by repulsive forces between the tip and the surface to produce 

a vertical deflection of ~-5 mV (Normal Force axis, NF). After snap-in, the tip and the surface are 

now in contact, and the vertical position displacement continues to produce a linear increase in the 

vertical deflection of the laser with a slope given by ΔNF/Δz as dictated by Hooke’s law. Once the 

end of the approaching distance has been reached (+20 nm for the depicted scenario), then the tip 

retracts (blue line). As the cantilever moves away from the surface, it is observed that the 

interaction forces exceed the snap-in forces due to adhesion forces leading to the so call “pull-off” 

force needed to detach the tip and return to the out of contact regime situation and the force to 

achieve this characterizes the interfacial surface adhesion at the nanoscale. ................................17 

Figure 2.10: Phase change of polarized light Is on top, and Ip bottom, upon reflection from the 

metal surface ..................................................................................................................................19 

Figure 2.11: Image of Dipole effect. ..............................................................................................19 

Figure 2.12: XPS schematic diagram for X-ray excitation of a 1s core electron. .........................21 

Figure 3.1: (a) Atomic Force Microscope head and sample photography through a UHV viewport, 

with a laser beam trajectory represented by red lines directed towards the center of the detector 

(illustrative inset diagram in white lines). (b) Schematic representation of the initial state of the 

surface and AFM topography image of the flat area of study within a surface terrace. (c) Schematic 



www.manaraa.com

viii 

 

representation of the AFM tip before (left) and while exerting contact stress (right) on the sample. 

(d) Illustration and topography image of the surface area after an experiment. ............................24 

Figure 3.2: Scanning electron microscopy images of the AFM tips. (a) top view of the cantilever, 

(b) side view of the cantilever, (c) low-magnification view of the silicon tip prior to the experiment, 

and (d) high-magnification image of the tip prior to experiment. Images were obtained in 

collaboration with Dr. D.R. Olson. ................................................................................................25 

Figure 3.3: Series of sequential force-distance curves for a saturated methyl thiolate overlayer 

adsorbed on Cu(100) at 298 K by exposure to DMDS showing the Approach and Retract curves.

........................................................................................................................................................26 

Figure 3.4: Topography images of surface showing the evolution of the surface over time at various 

contact pressures. ...........................................................................................................................27 

Figure 3.5: Typical indentation profile formed by compressing a methyl-thiolate saturated Cu(100) 

surface at a load of 69 nN for 9×103 s, compared to a fit for an elastic contact using an activation 

volume of 46 Å3, by assuming that the indentation depth is proportional to the extent of reaction.

........................................................................................................................................................27 

Figure 3.6: Variation in depth as a function of time, and fit assuming first-order reaction kinetics. 

The contact area, for calculating the maximum contact pressure 𝜎0, is obtained from the width of 

indentation......................................................................................................................................28 

Figure 3.7: Rates of normal-contact-stress induced mechanochemical decomposition of methyl 

thiolate species on Cu(100), showing a plot of the 𝑙𝑛⁡(𝑘𝜎0), where 𝑘 is the rate constant for the 

mechanochemical decomposition of methyl thiolate overlayer on Cu(100) at 298 K, measured 

from the maximum depth at the center of the indentation, as a function of the maximum contact 

stress, 𝜎0. The linear dependence demonstrates that the mechanochemical decomposition rates 

obey the Bell model.17 The intercept yields an activation energy for methyl thiolate decomposition 

in the absence of a normal stress of 105.4 ± 0.2 kJ/mol when using a pre-exponential factor of 

1×1014 s-1, in excellent agreement with experimental measurements 47 and theoretical 

calculations.46,48 .............................................................................................................................29 

Figure 3.8: (a) Activation energy calculated by DFT as a function of contact stress for the normal-

stress-induced mechanochemical decomposition of methyl thiolate species adsorbed on Cu(100).49 

(b) The experimental results are shown plotted directly as reaction activation energy versus 

maximum contact stress, compared with the DFT results. ............................................................30 

Figure 3.9: Evans-Polanyi plot of the activation energy for methyl thiolate decomposition on 

Cu(100)  as a function of normal stress, that is, Eact(σ) versus energy of reaction as a function of 

the normal stress, leading to a slope value α of 0.95 ± 0.02. .........................................................31 

Figure 3.10: 100 nm × 100 nm image of a sulphur-covered Cu(100) surface collected at a low load 

(a), and then compressed at the center point indicated by a red dot using a load of ~92 nN for 

1.2×104 s (b). The same region was then imaged at a load of ~25 nN (c) and showed no indentation.

........................................................................................................................................................32 



www.manaraa.com

ix 

 

Figure 3.11: Indentation profiles as a function of the number of scans of the AFM tip................32 

Figure 3.12: Plot of the evolution of a methyl thiolate overlayer on Cu(100) indented at ~52 nN 

for 9×103 s to remove ~50% of the methyl thiolate layer as a function of the number of scans when 

scanning at low load, displaying (a) the variation in the indented area and (b) the variation in the 

indented width as a function of the number of scans. ....................................................................33 

Figure 4.1: Modified R-P potential for the potential energy surface utilized. ...............................41 

Figure 4.2: (a) Energy profiles along x=y (lowest-energy pathway), and (b) along x+y=1 (across a 

maximum), though the transition state, as a function of +r. ..........................................................42 

Figure 4.3: Example of results from theoretical calculations showing the PES in absence of force 

(initial state), at the force in which minimum and saddle points meet (final state), and tracking of 

displacement of minimum (red dots) and saddle points (blue dots) as a function of applied force 

from the initial to the final state on top of final state contour plot. ...............................................44 

Figure 4.4: Theoretical results of activation barrier as a function of force until the energy barrier 

vanishes for different values of 𝑟 and azimuthal angle of the applied force. ................................44 

Figure 4.5: (a) Close up view of theoretical results of activation barrier as a function of force until 

the energy barrier is reduced to ~10% of its initial value, for different values of 𝑟 and azimuthal 

angle of the applied force. (b) Relative change in activation length as a function of azimuthal angle 

of the applied force. .......................................................................................................................45 

Figure 4.6: Schematic representation of (a) sliding experiment and topography images showing an 

initial experimental area, (b) schematics of the sliding of the tip on the surface and the reading of 

the detector for the trace and retrace direction and (c) final two rubbed equivalent lines of 30 nm 

in length each. ................................................................................................................................50 

Figure 4.7: (a) Photograph of the sample with the tip after approach used for calibrating the relative 

angles with respect to the [110] crystal direction obtained from in-situ LEED diffraction pattern 

shown in (b), and (c) schematic diagram of the Cu(100) surface, where the crystal directions and 

the lattice constant are depicted, and the methyl thiolate molecule is adsorbed at a four-fold site.

........................................................................................................................................................51 

Figure 4.8: Experimental topography images of a 30 nm line sliding as a function of angle 

experiment under 20 nN normal load, at a scan speed of 90 nm/s for 256 scans back and forth. .52 

Figure 4.9: Line normalized depth as a function of angle in a range from 0° to 40o and 180° to 220o 

in steps of 5o. Data were collected after 256 sliding cycles under 40 nN normal load over lines of 

30 nm in length at a sliding speed of 90 nm/s................................................................................53 

Figure 4.10: Line normalized depth as a function of angle in a range from 90° to 130o and 270° to 

310o in steps of 5o. Data were collected after 256 sliding cycles under 40 nN normal load over lines 

of 30 nm in length at a sliding speed of 90 nm/s. ..........................................................................53 



www.manaraa.com

x 

 

Figure 4.11: Normalized depth as a function of angle in a range of 45o for equivalent (-10°) - 35o 

and 170° - 215o angular ranges (the angles are normalized to 0o being aligned with [110] surface 

direction). Data were collected after 256 sliding cycles under a load of 20 nN with a scan amplitude 

of 30 nm, at a sliding speed of 90 nm/s. ........................................................................................54 

Figure 4.12: A friction loop for forward and reverse sliding under a load of 20 nN. ....................56 

Figure 4.13: Comparison of the experimental variation of the rate of methyl thiolate decomposition 

as a function of scan angle using a load of 20 nN (■), with the variation predicted by the simple 

model using a value of the lateral activation volume of 590 Å3 (●). Shown for comparison is the 

prediction of the model using this value of activation volume for a normal load of 49 nN (▼). .57 

Figure 5.1: Side and top views of bilayer aluminosilicates on a metal support. The yellow circles 

can be Si or Al. Red circles are O from the silicate framework. Pink circles are O atoms 

chemisorbed on the metal. Large gray circles are the metal support atoms. .................................61 

Figure 5.2: Shutdown of the National Synchrotron Light Source, commemorative t-shirt. ..........64 

Figure 5.3: (a) Ar 2p spectra as a function of temperature after exposure of an aluminosilicate film 

on Ru(0001) to 1 mbar of Ar. (b) Plot of the relative amount of Argon versus temperature. .......64 

Figure 5.4: Argon is trapped by Al0.2Si0.8O2/Ru(0001) when exposing the structure to 1 mbar of 

the gas at 300 K. Ar atoms can be trapped at the interface between Ru(0001) and the 

aluminosilicate framework and/or within the hexagonal prism nano-cages that compose the 

aluminosilicate structure. ...............................................................................................................65 

Figure 5.5: Xe 4d core level XPS spectrum after exposure to 1.5 Torr Xe at 300 K (red), partial 

desorption after 520 K annealing is observed (green). ..................................................................66 

Figure 5.6: Hexacelsian structure, (a) top view and (b) side view of the layered material 

intercalated by barium atoms (green). Red spheres represent oxygen atoms and yellow/grey are 

either sodium or aluminum in the aluminosilicate bilayer. (Vesta software) ................................67 

Figure 5.7: Hexacelsian synthesis protocol (a) Ion exchange reaction (b) diagram of the ion 

exchange protocol and (c) calcination procedure. .........................................................................68 

Figure 5.8: X-ray powder diffractogram of obtained hexacelsian (blue) and comparison with 

literature (black76 and brown77 insets). Green lines serve as a guide to the eye for the hexacelsian 

signals (labeled as H in top inset and * in bottom inset). ..............................................................69 

Figure 5.9: Diagram of delamination protocol where the solvent is deionized water. ..................70 

Figure 5.10: FTIR spectra of hexacelsian (Ba-LTA calcined at 900oC) and exfoliated products 

under the presence of three different solvents. ..............................................................................71 

Figure A1.1: Experimental setup utilized for infrared reflection absorption spectroscopy studies of 

furfural on Pd(111). .......................................................................................................................75 



www.manaraa.com

xi 

 

Figure A1.2: Diagram of the cleaning protocol for Pd(111), consisting of three sequential steps, 

argon bombardment, annealing and oxygen roasting. Photograph of the sample while annealing is 

shown as background. ....................................................................................................................76 

Figure A1.3:  Infrared spectra of low coverages of furfural adsorbed on Pd(111) at ~90 K as a 

function of furfural coverage, where the coverages are indicated in the figure. ...........................77 

Figure A1.4:  Uptake for furfural on Pd(111) at low temperatures from the variation in the 

integrated intensity of the carbonyl stretching modes as a function of exposure. .........................78 

Figure A1.5: Plot of furfural tilt angle with respect to the surface as a function of the relative 

coverage of furfural adsorbed on Pd(111) at ~90 K. .....................................................................79 

Figure A1.6: Infrared spectra of a furfural multilayer adsorbed on Pd(111) at 84 K and annealed 

to various temperatures where the annealing temperatures are indicated adjacent o the 

corresponding spectrum. ................................................................................................................82 

Figure A1.7: Multilayer spectra of furfural adsorbed at 80 K on Pd(111) and then annealed to 

higher temperatures showing mostly a peak due to flat-lying furfural at 790 cm-1 on heating above 

175 K. The spectrum also shows peaks that are signatures of the cis conformer of furfural. .......83 

Figure A1.8: Infrared spectra after a 10 L FF exposure on Pd(111) at 170 K to capture the transition 

from the tilted into a more flat-lying configuration of this phase that contains predominantly cis-

furfural. Spectra were always collected at 84 K after flash annealing to a target temperature 

(specified in the legend) and by allowing the sample to cool to 84 K to collect the spectrum. ....84 

Figure A1.9: Close up of 180 K for signal labeling and close caption of the chemistry occurring at 

more elevated temperatures. ..........................................................................................................84 

Figure A1.10: Structure obtained from coordinates given in literature113 for single crystal furfural. 

(Vesta Software) ............................................................................................................................85 

Figure A1.11: Detailed view of the high-frequency region of the spectra for furfural on Pd(111) 

where the annealing temperatures are indicated on the figure. Broad features sharpen in the region 

of cis conformer signals at 3110 and 2813 cm-1 at 180 K. .............................................................86 

Figure A1.12: Infrared spectra of furfural (using a 1 L exposure from Fig. A1.3) adsorbed on 

Pd(111) at ~90 K as a function of annealing temperature, where the annealing temperatures are 

indicated on the figure. ..................................................................................................................87 

Figure A1.13: Infrared spectra collected at three key temperatures, adapted from Fig. A1.11, which 

are overlapped to illustrate the trans to cis transition after annealing. ...........................................88 

Figure A2.1: Schematic diagram of a 40 × 40 triangular lattice with periodic boundary conditions 

for a coverage θ ≈ 0.12 of monomeric units. The blue, green and yellow circles represent 

monomeric units aligned along the three lattice directions, as shown by the arrows. The gray circles 

are the empty sites in the lattice, and the red circles represent the fixed particles taking the role of 

nucleation sites. ..............................................................................................................................95 



www.manaraa.com

xii 

 

Figure A2.2: STM image of (Au-PDI) wires on Au(111). Nodal points where the (Au-PDI)n wires 

originate from are emphasized by red circles. Imaging conditions: It = 206 pA, Vb = -2 V.  At the 

top right corner a schematic representation of the simulated system is shown where the blue, green 

and brown circles represent directional monomeric units aligned along the three lattice directions, 

as shown by the double arrows. The white circles are the empty sites in the lattice and the red 

circles represent the fixed particles taking the role of nucleation sites. .........................................97 

Figure A2.3: Probability of assembly for an elementary circuit unit with nodal points 4 sites apart 

from each other at the center of a system of size L × L = 40 × 40 sites as a function of computational 

time (MCS), interaction energy      w = 124 kJ/mol for various initial monomer coverages (θ) 

averaged over 1×107 results of independent parallel runs. This calculation was run on using Open 

Science Grid resources.  In the legend, the coverages are listed as the number of monomers in 

excess of those required to form the elementary circuit unit. ......................................................102 

Figure A2.4: Snapshot of an assembled elementary circuit unit with nodal points 20 sites apart 

from each other at the center of a system of size L × L = 40 × 40 sites. The state was achieved at 

an interaction energy “𝑤” = 6 kJ/mol. The probability of forming this structure was virtually zero 

for any other 𝑤 values analyzed, which means that we might have, for nearest neighbor diffusion, 

different ideal conditions with regards to protocols for designing molecular architectures than the 

case of random diffusion. .............................................................................................................103 

Figure A2.5: Probability of circuit assembly as a function of computational time and coverage. 

Simulation of the formation of the network of triangles with a nodal distance of 5 monomers, 

system size L × L = 160 × 160, w = 124 kJ/mol..........................................................................105 

Figure A2.6: Probability of assembly of an entire triangular circuit with nodes being 10 sites apart, 

at different dosages for a system of L × L = 60 × 60 averaged results over 1000 samples vs time 

(in MCS). The dosage time interval is (a) 1 MCS; (b) 100 MCS; with the same color, vertical line 

denotes when the dosage finish....................................................................................................107 

Figure A2.7: Formation percentage of an entire triangular circuit with nodes being 10 sites apart, 

at different dosages for a system of L × L = 60 × 60 averaged results over 1000 samples vs time 

(in MCS). The dosage time interval is (a) 1 MCS; (b) 100 MCS; with the same color, vertical line 

denotes when the dosage finish....................................................................................................107 

Figure A2.8: Chain length distribution plot as a function of computational time, allowing statistical 

tracking of the evolution of the system after the random introduction of individual monomers. At 

the conditions used here, the system evolves to promote self-assembly, decreasing the number of 

isolated monomers and increasing the size of the chains with time. This improvement can be 

utilized to see at equilibrium condition what is the average length of chains existing in the system, 

and potentially promoting bridging between contacts (or nanoparticles). ...................................109 

Figure A2.9: Close up view of the first 1000 MCS of Fig. A2.8. The chain length distribution is 

used here to study the dynamics of the chain growth. .................................................................109 

Figure A2.10: Image analysis of real systems for creating a library of particles to input in the 

calculation. (a) and (b) Scanning electron microscopy images of experimental gold nanoparticle 



www.manaraa.com

xiii 

 

distribution courtesy of Dr. Dustin Olson. (c) image analysis for extracting pixel coordinates of 

nucleating sites. (d) digitized system. ..........................................................................................110 

Figure A2.11: Example of a snapshot of a calculation running on a digitized experimental system. 

Blue, gold and green particles represent directional mobile monomers and red particles are 

digitized nucleating gold nanoparticles, empty sites are shown in black. ...................................111 

Figure A2.12: Top, a schematic diagram of the percolation algorithm search. Bottom, two 

Snapshots at two different times of a system to show a graphic representation of results from the 

improved percolation algorithm. Here, connected (blue) and non-connected structures (red) are 

showing the percolation from left to right in a system with top and bottom periodic boundary 

conditions. ....................................................................................................................................112 

Figure A2.13: Ideal nanoparticle distribution with controlled sizes for studying, for instance, 

impact in guiding power of self-assembled nanoarchitectures. Top, representation of different 

hexagonal nanoparticle sizes from single particle to 7 lattice units maximum width. Bottom, impact 

on guiding power of hexagonal nanoparticle size for a system of 80 × 80 sites with 64 

nanoparticles, occupying a single site (left) and seven lattice units max width (right). Interaction 

energy, w = 124 kJ/mol. ...............................................................................................................113 

Figure A2.14: Comparison of the same calculation run Windows and Linux Operative System 

(OS). The time needed for different coverage conditions is shown. For the case in which the 

coverage is such that there coverage of 2000 monomer above those required to from the network 

of ECU5 (80 × 80 sites system dimensions), the same program takes 7 minutes to run on Linux and 

14 minutes on Windows. Snapshots of the systems after included as background for illustrating 

the three different coverages in monomers referenced to the minimum number to needed to form 

the network of ECU5 (+2000, +600, -2000). The case of -2000 reflects a total number of monomers 

below that needed to form the network of ECUs. ........................................................................114 

Figure A2.15: Checkpointing test for scaling at OSG. The calculation backup was saved at 30 

kMCS (blue line) and successfully executed when resubmitted (black). Differences with original 

nonstop calculation (green) are related to the seed on the random number generated, and it is 

statistically correct to observe this slight variation. Calculation conditions for this test were: 

System size L × L = 80 × 80 sites and 3328 monomers to form the circuit of array elementary 

circuit units. Node separation 5 sites. ..........................................................................................115 

Figure A2.16: General representation of workflow diagram for executing self-assembly 

calculations at the OSG. Directed Acyclic Graph Manager (DAGman) is used to manage and 

automate the regular protocol used in this calculations, generate a tree of calculations for each 

model “*.cpp” to create and organize a variety of parameters/arguments to be tested “tree of 

calculations” compile them, submit them, report regularly partial results and perform 

checkpointing to resume calculations if necessary. Finally, report final results and clean 

unnecessary files. .........................................................................................................................117 



www.manaraa.com

xiv 

 

LIST OF TABLES 

 

Table 1: Symmetry properties of the stress induced decomposition of a pseudo diatomic species 

adsorbed on a four-fold hollow surface site. ................................................................................. 49 

Table A1.1: Assignment of the infrared spectrum of furfural multilayers and monolayers on 

Pd(111). ......................................................................................................................................... 80 



www.manaraa.com

xv 

 

ACKNOWLEDGMENTS 

 

I would like to express my sincere appreciation to my advisor Dr. W.T Tysoe for his 

guidance, shared encouragement, unconditional dedication and laudable expertise as a scientist. I 

gratefully acknowledge all the current and former members of the “Tysoe’s Group” I have met for 

their cooperation, work and pleasant shared time. Also, I would like to thank my dissertation 

committee members: Dr. Peter Kotvis, Dr. Jorg Woehl, Dr. Arsenio Pacheco, Dr. Alan 

Schwabacher and Dr. Wilfred Tysoe for their time and valuable feedback. I’m grateful to Elise 

Nicks and Wendy Grober for their help and advice. I am also grateful to Octavio Furlong, Anibal 

Boscoboinik, Sergio Manzi, and Victor Pereyra for always being present and willing to discuss 

about any plan and steps to be taken in my academic career, for their ability to share knowledge 

and friendship, thank you. I would like to thank the National Science Foundation for support of 

this work under grant number CMMI-1265742. 

                                                                                                           



www.manaraa.com

 

1 

 

Chapter 1: Introduction 

The transformation of matter, in which there is a change in the chemical state of a substance 

involved, is known as chemical reaction. These transformations are often initiated by heat, light 

and electricity, and its study is covered by the fields of thermo- photo- and electro-chemistry. 

However, chemical reactions can be mechanically activated by the influence of a force. This 

belongs to the field of mechanochemistry, and that is the theme of the main body of the work 

described in this thesis. Mechanical activation is perhaps one of the oldest methods of inducing 

chemical reactions; Theophrastus of Eresus (c. 371 – c. 287 BC) reported, over two millennia ago, 

the mechanochemical reduction of cinnabar to mercury.1 A myriad of scientists has proposed 

theoretical models for understanding the effect of a force (regularly in the form of stress, force per 

unit area) in a chemical reaction. Tracking back the connections between these scientists is quite 

clear that Prandtl 2 and Eyring 3 have led to the developments researchers have reported hereto. 

While the fields of investigation in which mechanochemistry has been addressed are vast, there 

seems to be a common ground. That is, at the fundamental level, the effect of a force is evidently 

influencing the system under study, and a reaction can still be treated as a thermally driven.4 

Recently a wide range of organic and inorganic mechanochemical syntheses have been reported, 

5–9 and mechanochemical process are ubiquitous in biology.10–12 Perhaps the most economically 

important class of mechanochemical reactions involves lubricant additives that react at a sliding 

interface to form friction- or wear-reducing films.13 For example, the film formed by a common 

antiwear engine oil additive, zinc dialkyl dithiophosphate (ZDDP), has recently been shown to be 

mechanochemically induced.14 Identifying how lubricant additives react at surfaces is important 

for reducing macroscopic and microscopic friction (e.g. in cars and micromachines).15 In spite of 
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these experimental and theoretical advances, we have yet to perform experiments to achieve 

atomic-scale fundamental understanding on the validity of the data reported and theories proposed. 

In this work, mechanochemistry, and confinement effects, are explored at a fundamental level 

through controlled experiments in well-defined environments.  

Chapter 2 describes the materials and methods used in this work and the importance of working in 

ultra-high vacuum (UHV) conditions.  

A film of methyl thiolates produced by dosing dimethyl disulfide (DMDS) on Cu(100) will be the 

chemical model system utilized in Chapters 3 and 4 for studying mechanochemistry from a 

fundamental point of view. This methyl thiolate film has been considered, among other dialkyl 

disulfides, to be sufficiently reactive that it could form the basis of lubricants for sliding copper-

copper interfaces at room temperature.16 The mechanically induced rate of a chemical reaction is 

described by the Bell model.17 There, the rate constant k for a reaction under an applied stress 𝜎 is 

given by 𝑘(𝜎) = 𝑘0exp⁡(𝜎∆𝑉
‡ 𝑘𝐵𝑇⁄ ), where 𝑘𝐵 is the Boltzmann constant, 𝑘0 is the reaction rate 

in the absence of stress, ∆𝑉‡ is known as the activation volume, and 𝑇 is the absolute temperature. 

While exponential increases in reaction rates with stress have been reported, there are currently no 

quantitative measurements on well-defined model systems. This is addressed in Chapter 3 by using 

contact-mode Atomic Force Microscopy (cmAFM) to measure the kinetics of mechanochemically 

induced C-S bond cleavage in methyl thiolates on Cu(100) in UHV. The mechanochemical 

reaction is studied by analyzing the evolution of the topography of the surface as a function of time 

at various contact pressures. 

Chapter 4 describes experiments corresponding to the study of the methyl thiolate film under the 

influence of both normal and directional lateral stress. There, we analyze topography changes 
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resulting from sliding, as a function of dwell time at a specific load of the AFM tip on top of the 

sample.  

In Chapter 5, we provide a strategy for the study confinement effects by first exploring the trapping 

of noble gases in 2D-aluminosilicate, and then exploring an alternative, inexpensive, bulk 

synthesis method for the aforementioned 2D-material.  

While being of great practical importance, the field of mechanochemistry is still significantly 

unexplored at the fundamental level, both experimentally and theoretically. Aiming at 

understanding mechanistic and kinetic aspects of force-induced reactions, the results of this work 

enable placing descriptions of mechanochemical processes on a firm theoretical footing. This work 

is a step forward toward the objective of making quantitative predictions of mechanochemical 

reactions.  

Other related projects are included as Appendices. A precursor for obtaining more valuable 

feedstocks, furfural, is studied in Appendix 1 and the structural changes of furfural adsorbed on a 

Pd(111) single crystal primarily measured by surface infrared spectroscopy is studied. Appendix 

2 describes work that was started before arriving in UWM, but which I actively continued while 

at UWM, namely, developing strategies for producing directed nanoscale self-assembled 

molecular structures using Monte Carlo simulations. Some of the strategies that were developed 

were later expanded and applied experimentally in work lead by Dr. Dustin Olson. This appendix 

includes only the prior work I led and my contributions to the collaboration with Dr. Olson as well 

as future relevant plans related with the project. 
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Chapter 2: Materials and Methods 

2.1 Introduction 

Fundamental surface-science studies generally involve investigating well-defined model systems 

at the atomic scale, i.e.: using clean, well-defined single crystal surfaces that can then be exposed 

to adsorbates. These adsorbates can potentially diffuse on the surface, interact with each other by 

short- or long-range interactions to form superstructures, induce restructuring of the substrate, 

and/or undergo chemical reactions. Therefore, careful preparation of the sample and the reactants 

is of crucial importance to obtain reproducible results related to the processes occurring at the 

atomic scale. Working in ultrahigh vacuum (UHV) conditions (where 𝑃 < ~1𝑥10−9 Torr) is 

necessary to ensure the rate of adsorption of background species is low enough so that an 

experiment can be carried within hours with the minimum amount of contamination. Under these 

conditions, the mean-free path of the molecules is generally larger than the dimensions of the 

experimental vacuum chamber, so that gas-phase collisions become rare events. Hence, on the 

time frame of the experiments, gas-phase reactions can be ignored and attention focused on 

studying surface processes of interest. This allows adsorbates to be introduced in a controlled 

manner. Taking these issues into consideration, UHV conditions are used for all experiments 

unless specified otherwise. The strategies that are used to obtain such conditions and the 

experimental techniques that can be used under these conditions are described below. 

2.2 UHV Technology 

Stainless-steel chambers are the basis for our experimental apparatus, which is held under ultrahigh 

vacuum conditions to control the adsorption of molecules and diminish the influence of 

contaminants from the background gases adsorbing onto the sample. 
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2.2.1 UHV Chambers 

Stainless-steel chambers contain the experimental environment under ultrahigh vacuum 

conditions. They are capable of accommodating the needed UHV-compatible equipment through 

flanged ports. These consist of items such as windows, leak valves, sample manipulators, 

spectroscopic probes, vacuum pumps, etc. UHV seals are achieved by using knife-edged unions, 

also known as Conflat flanges, on all the ports where the parts are connected. These sharp edges 

meet on both sides of copper gaskets to produce a tight and reliable leak-free seal between the two 

components connected. The process for achieving the UHV conditions after the chamber is closed 

involves a sequence of adequate pumping mechanisms. However, by merely pumping the chamber 

is not sufficient. This is primarily because of the low rate of water desorption from the inner walls 

of the chamber that limits the base pressure than can be obtained in the chamber. Therefore, in 

order to accelerate the water desorption, the chamber is heated by a heating tape attached to the 

outer surface of the stainless-steel, which is covered by aluminum foil to proceed to perform a 

bakeout process. The chamber temperature is monitored to adjust the current through the resistive 

tape to achieve a temperature of approximately 120 oC for approximately 48 Hs. The aluminum 

foil helps to keep the chamber at consistent temperatures preventing heat loss and the appearance 

of cold spots. After cooling the system, the necessary UHV conditions are achieved. Typical 

pressures after bakeout are in the order of ~10−11 Torr.  

The experimental apparatus used for the work here presented is mounted on a rigid frame that 

supports the whole vacuum system. In some cases, the frame is supported on pneumatic air legs to 

minimize the influence of external vibrations for experiments that are sensitive to changes in the 

environment, such as scanning probe microscopies. In the UHV atomic force microscope (AFM), 

scanning tunneling microscope (STM) apparatus that was primarily used during this work, the two 
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main vacuum vessels are used as a preparation chamber in which the samples can be cleaned and 

characterized, and a scanning probe microscopy (SPM) chamber that is used to image the surface, 

separated from each other by a gate valve. Each vessel is separately pumped by an ion pump. The 

preparation chamber is connected to a turbomolecular pump through a small high-pressure cell (at 

the right of Figure 2.1). The SPM chamber is connected to a second turbo molecular pump through 

a load lock (at the left of Figure 2.1). All chambers can be isolated by gate valves (VAT Inc.). The 

introduction or removal of samples and scanning probe tips from the system can be performed 

using a transfer arm that connects the load-lock to the SPM chamber. Furthermore, the sample or 

tip holder can be transferred from the SPM chamber to the preparation chamber using a second 

transfer arm (MDC LLC) which has a mounting stage similar to that in the SPM chamber. These 

stages have electrical connections to allow the temperature measurement (through a thermocouple) 

and controlled electron-beam heating. Further details on the design of this versatile assembly are 

well described elsewhere.18 In this work, Auger electron spectroscopy (AES) and low-energy-

electron diffraction (LEED) techniques are included as an Omicron LEED/Auger system mounted 

in the preparation chamber. An ion gun is used for Ar+ sputtering for cleaning purposes. At the 

SPM chamber, the microscopy technique utilized in this work is contact mode Atomic Force 

Microscopy (cmAFM). 
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Figure 2.1: UHV Chamber Experimental Setup 

 

2.2.2 Vacuum Pumps  

There are generally four different types of pumps utilized to achieve UHV conditions, namely, 

mechanical (rotary) pumps, turbomolecular pumps, diffusion pumps, and ion pumps. 

2.2.2.1 Rotatory (Mechanical) Pumps 

 

Rotary pumps produce mechanical rotary work, which is translated into fluid movement. Even 

though only pressures on the low milliTorr range can be achieved, due to the nature of the pumping 

mechanism, they are crucial components for achieving UHV conditions. They are utilized for 

rough pumping and backing turbomolecular and diffusion pumps. They consist of a rotor in which 

vanes are mounted, see Figure 2.2. While rotating, the vanes displace the gas inside the housing, 

promoting suction from one side and subsequent displacement of the gas towards the exhaust 

through the rotational cycle inside the circular cavity. These moving parts need to be tightly sealed 
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and lubricated, which is achieved by continuous exposure to a lubricating, low-vapor pressure 

vacuum oil.  

 

 

Figure 2.2: Mechanical pump diagram. 

 

2.2.2.3 Turbomolecular Pumps 
 

Turbomolecular pumps, invented in 1958 by W. Becker,19,20 are mechanical ultrahigh vacuum 

pumps. Within a reasonable period of time, turbomolecular pumps are capable of reducing the 

pressure of the pumped system from an intermediate vacuum (~10−4 Torr, obtained using a rotary 

pump) to good high-vacuum conditions (~10−9 Torr). They consist of sets of blades organized as 

displayed in the diagram of Figure 2.3. Within these sets of blades, the stator and rotor blades can 

be recognized. The molecules which enter the inlet (from the vacuum system), collide with the 

moving blades and receive an additional momentum in the moving direction of the blade producing 

the displacement of the gases towards the next stages. This mechanism repeats until the accelerated 

molecules travel through the whole set of stages to leave the pump through an outlet. These 

expensive devices are to be backed by a mechanical (rotary) pump before they started and while 

they are being turned off. A spin-down process, in which a venting valve is used to allow gas into 
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the turbomolecular pump, can accelerate the process. A backing pump is needed because the 

rotational speed of these blades under normal operation is ~ 75 thousand revolutions per minute 

(krpm) and, to reach and operate under those conditions, the heat generated by frictional processes 

and molecular collisions needs to be minimized. In order to reduce the friction, the operation is 

started when the pressure on the pump is at ~10−3 Torr, and magnetic bearings are generally used 

to minimize energy dissipation. A major drawback of mechanical and turbomolecular pumps is 

their introduction of vibrations to the experimental system. This is especially inconvenient for 

vibrational-sensitive experiments, such as in the case of this work when using AFM or STM. 

 

 

Figure 2.3: Turbomolecular pump schematic diagram. 

 

2.2.2.4 Diffusion Pumps 

 

Oil diffusion pumps are high-speed pumping devices capable of achieving pressures down to the 

108−9 Torr. Invented in 1915 by Wolfang Gaede,21 they consist of a jet shaped structure (see 

schematics in Figure 2.4). A high-speed upwards flow is generated by boiling oil of low vapor 

pressure (to prevent back-streaming of the oil into the chamber). This high-speed vaporized oil is 
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then deflected by the jet type design and then leading to a net flow of gasses away from the vacuum 

system. The latter causes the system pressure to drop, and the oil inside the diffusion pump is 

condensed by the cooled walls of the device and is recovered at the bottom to restart the cycle 

leaving the entrained gas to be removed by means of a rotary pump. While these pumps have the 

benefit of simplicity, low cost, high pumping speed, and low final pressures, the backstreaming of 

oil is a risk that has to be carefully managed. If either the cold trap or the backing pump experience 

operational problems, the vacuum system could be exposed to diffusion pump oil. In this case, the 

pump is often controlled by interlocks that turn off the diffusion pump if the pressure becomes too 

high or the cooling is impeded. 

 

 

Figure 2.4: Diffusion pump schematic diagram. 
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2.2.2.5 Ion Pumps 

 

Ion pumps are the modern primary choice for achieving UHV conditions. With these pumps, 

pressures can reach as low as 10−11 Torr and have the benefits of not introducing vibrations to the 

system because of the lack of moving parts, as shown in Figure 2.5. The latter means that the pump 

does not require oil and backstream is not a problem. These long-lasting pumps work by 

accelerating ionized molecules (from the anode) towards plates (cathode) generally made of a 

titanium alloy. The accelerated molecules collide with the cathode with enough kinetic energy to 

be buried in it and potentially cause sputtering of the titanium plates leaving clean reactive material 

exposed for continuing this process. This is also known as gettering. High DC voltage applied 

between the anode and the cathode initiate the ionization by plasma discharge. This is enhanced 

by the acceleration of electrons in helical trajectories (Penning trap), as a result of the presence of 

strong magnetic fields (1-2 kG), increasing the probability of collisions with incoming gas 

molecules. Furthermore, ion pumps are advantageous devices in the sense that they do not need to 

be backed by a mechanical pump. However, the range of operation is pressures lower than 10−5 

Torr, which means that an ion pump cannot be started until the system is operating under this 

condition. In terms of speed, ion pumps are slower than turbomolecular and diffusion pumps for 

the same physical size and more expensive. Finally, it should be noted that non-reactive gases such 

as argon will be pump very slowly because they are not efficiently gettered. Prolonged exposures 

to this noble gas should be avoided since the chemisorption assisted process will be negligible, 

and the continuous sputtering of the titanium surfaces will translate into decreasing the lifespan of 

these expensive pumps. 
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Figure 2.5: Ion pump diagram. 

 

2.2.5 Gas Handling Line and Chemical Purification 

In the vacuum equipment used in this research, gas-handling systems constructed of Pyrex is 

utilized to contain and introduce gases into the UHV chambers through high-precision variable 

leak valves. These assemblies are generally mounted to the chamber frame, and built in-situ by a 

glassblower. A schematic diagram of a gas handling line is shown in Figure 2.6. Usually pumped 

by diffusion and rotary mechanical pumps, these gas-handling lines can reach pressures of 10−7 

Torr without baking. The pressure is measured by using a cold cathode gauge which is sensitive 

in the 10−7 Torr to milliTorr range. Above that pressure, a diaphragm and/or capacitance 

manometer in the milliTorr to Torr range is used. The chemical samples, commonly contained in 

glass vials (for vapors or liquids) or cylinders (for gasses), are attached to the gas line via ¼” 

Swagelok valves. The liquid samples are purified by sequential freeze-pump-thaw cycles before 

being loaded to the gas-line. Often, two or more sections of this glass manifold can be isolated by 
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closing glass valves with Teflon stopcocks to isolate each section to contain a specific sample. The 

latter allows the introduction of more than one gas or vapor into the chamber simultaneously or 

sequentially, preventing the time delay spent on evacuating the line for the sequential scenario. 

Once loaded, the gas or vapor is introduced in the chamber by using variable leak-valves, 

connected to the gas line sections by glass-to-metal seals. The purity of the gases can also be 

monitored after leaking into the chamber using a mass spectrometer. 

 

 

Figure 2.6: Gas Handling Line diagram. 
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2.3 Fundamentals of the Techniques 

2.3.1 Contact mode – Atomic Force Microscope (cmAFM) 

The Atomic Force Microscope (AFM), invented in 1985 by IBM scientists Gerd Binning and 

Calvin Forrest Quate,22 is a microscopy technique without optical lenses. Images are collected by 

scanning a fine tip over the surface and measuring the topography from the variation in the height 

of the tip as a function of position. Generally, the height of the tip is measured by reflecting a laser 

beam from the rear surface of a flat cantilever and directed to a quadrant photodetector. On the 

other side of the cantilever, there is a tip, ideally ending in a single atom (see Figure 2.7). When 

the tip interacts with the surface, the cantilever bends vertically and twists laterally, causing the 

laser beam to deflect. The deflection is sensed by the quadrant photodetector. The vertical and 

lateral displacements on the detector provide detailed information on both normal and lateral 

properties related to forces and friction, respectively.23 This information can be used to produce 

topography images as well as friction maps of the surface and investigate surface properties at the 

atomic scale.  

 

 

Figuire 2.7: Schematic of quadrant photodetector showing the laser deflection from the rear surface of the cantilever 

while the tip rasters the surface in different directions, shown in the left and right images.  
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In contact mode atomic force microscopy studies, the normal load is held constant by a feedback 

loop mechanism that controls the vertical position of the cantilever using a piezoelectric material. 

Hence, scanning probe microscopies generally work by taking advantage of expanding or 

contracting a piezoelectric material under an applied voltage across the crystal. The small change 

in size per unit cell adds up over billions or trillions of unit cells and produces measurable but very 

precise size differences. By scanning the surface and keeping the normal load constant (constant 

deflection) by means of a feedback loop, the applied correction voltage maps the surface 

topography of the sample. The quadrant photodetector outputs four voltages proportional to the 

intensity of light captured by each quadrant. When the spot moves, the light is distributed 

differently, increasing in some quadrants at the expense of signal decrease on the other quadrants. 

By the mathematical manipulation of the four signals, the vertical (due to cantilever bending) and 

lateral (due to cantilever twisting) deflections of the laser can be measured. This provides a 

measurement of the local normal and lateral force respectively.24 

Dictated by Hook’s law, the tip-surface interaction force 𝐹𝑁 is determined by the bending of the 

cantilever Δ𝑧, which is sensed by the deflections of the laser from its equilibrium position, 

 

 𝐹𝑁 = 𝑘Δ𝑧 (2.1) 

 

where k is the cantilever spring constant. Figure 2.8 shows a scanning electron microscopy (SEM) 

image of an n-type Silicon tip of a nominal radius of 8 nm and a cantilever constant of 0.5 N/m. 

The spring constant for normal bending can be calculated from its geometry 25 as, 

 

 𝑘 =
𝐸𝑤𝑡3

4𝑙
 (2.2) 
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where 𝐸 is Young’s modulus of the material, 𝑤 is the width, 𝑙 is the length, and 𝑡 the thickness of 

the cantilever. These dimensions can be obtained from SEM images. Another way to determine 

the thickness is from the resonance frequency of the cantilever, 𝑓 as, 

 

 𝑡 =
2√12𝜋

1.8752
√
𝜌

𝐸
𝑓𝑙2 (2.3) 

 

where 𝜌, is the mass density of the material. In the case of silicon, 𝜌 = 2330⁡ kg 𝑚3⁄  and 𝐸 =

1.69 × 1011 ⁡N m2⁄ , then thickness becomes, 

 𝑡 = 7.23 × 10−4⁡s/m × 𝑓𝑙2 (2.4) 

 

The spring constant and parameters from force distance (F/z) curves such as the ones depicted in 

Figure 2.9 are used for converting the precise force signal from mV into nN.  

 

 

Figure 2.8: Scanning electron microscopy images of a commonly used commercial n-type silicon AFM tip. (a) Side 

view of the cantilever, (b) top view of the cantilever, (c) and (d) close-up views of (a) and (b) respectively. Images 

were taken in collaboration with Dr. Dustin R. Olson. 
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Figure 2.9: Force distance curve, the green line originating from left (-50 nm to 0 nm) shows the out -of- contact 

regime of the linear lever approach (here the distance axis corresponds to vertical displacement, z in nm) which 

continues until the long-range attractive interaction forces cause the tip to “snap-in” until it is balanced by repulsive 

forces between the tip and the surface to produce a vertical deflection of ~-5 mV (Normal Force axis, NF). After snap-

in, the tip and the surface are now in contact, and the vertical position displacement continues to produce a linear 

increase in the vertical deflection of the laser with a slope given by ΔNF/Δz as dictated by Hooke’s law. Once the end 

of the approaching distance has been reached (+20 nm for the depicted scenario), then the tip retracts (blue line). As 

the cantilever moves away from the surface, it is observed that the interaction forces exceed the snap-in forces due to 

adhesion forces leading to the so call “pull-off” force needed to detach the tip and return to the out of contact regime 

situation and the force to achieve this characterizes the interfacial surface adhesion at the nanoscale. 

 

The possibility of carefully looking at the adhesion forces from F/z curves, topography images of 

the mapped surface along with friction maps, can be correlated, for example, to a certain degree 

of physical/chemical change.26 For instance, removal of material either by chemical reactions or 

lateral displacement of the surface species will lead to changes in depth and possibly friction. 

Through chemical reaction, it is possible not only to remove but also add surface material.27,28 

Topographically, indistinguishable surfaces could present distinctive friction characteristics and, 

therefore, different properties. 
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2.3.2 Infrared Reflection-Absorption Spectroscopy (IRRAS)  

Being one of the most powerful structural techniques in surface sciences, IRRAS, a nondestructive 

technique, takes advantage of dipole selection rule, which states that, with p-polarized infrared 

light (Ip) incident of the surface, only adsorbates with vibrational modes perpendicular to the 

surface are exited. This is because parallel polarized radiation (Ip) with respect to the plane of 

incidence produces a phase shift dependent on the angle of incidence, leading to the intensity of 

the component of the radiation normal to the surface being almost twice as intense as the incident 

radiation when working at a grazing angle of approximately 82 degrees. However, for the case of 

perpendicular polarized radiation (Is), the phase shift is nearly 180° for all incidence angles, the 

net amplitude of the IR radiation parallel to the substrate surface is zero as shown in Figure 2.10. 

Vibrational modes of the adsorbed molecules that are perpendicular to the surface promote the 

creation of a dipole in the substrate to screen the charge as shown in Figure 2.11 (left), the net 

effect is to increase the overall dipole moment. However, for the case of vibrational modes parallel 

to the surface the image charges on the surface cancel the dipole moment and thus they are IR 

inactive, see Figure 2.11 (right).  
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Figure 2.10: Phase change of polarized light Is on top, and Ip bottom, upon reflection from the metal surface 

 

 

Figure 2.11: Image of Dipole effect.  
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The differential reflectance spectrum is often obtained as the difference between the reflection 

spectrum of the clean substrate and the covered substrate relative to the clean substrate, ΔR/R, and 

it is proportional to the surface coverage. Vibrational frequencies and intensities serve as 

information for identifying the surface species and elucidating molecular orientation with respect 

to the surface and adjacent molecules. Optimizing the incident grazing angle of the IR light leads 

to signal to noise ratios capable of identifying molecular species at sub-monolayer coverages.  

2.3.3 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy was developed in the mid-1960s by Kai Siegbahn, and the 

technique was originally known as Electron Spectroscopy for Chemical Analysis (ESCA). In 1981 

the Nobel Prize in Physics was given to Siegbahn for this discovery. XPS for surface analysis is 

performed by irradiating the sample with monochromatic soft x-rays which causes photoemission 

of electrons from the core and valence energy levels where the binding energy of the initial electron 

is related to the kinetic energy of the emitted electron.  

As the energy of the incident beam (ℎ𝜈), and work function of the metal (𝛷) are known, the 

binding energies (𝐸𝐵𝐸) after detection of the kinetic energy of the ejected electrons (𝐸𝐾𝐸) can be 

calculated according to,  

 

 𝐸𝐾𝐸 = ℎ𝜈 − 𝐸𝐵𝐸 − 𝛷 (2.5) 

 

A spectrum of number electrons detected versus their respective kinetic energy is obtained and the 

peaks are labeled using spectroscopic notation. The binding energy of the electron with respect to 

vacuum, 𝐸𝐵𝐸, serves as a fingerprint of the chemical bonding and structure of the material under 
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study. Due to the short mean free path of the ejected electrons that come from subsurface regions, 

this technique is predominantly surface sensitive.  

 

 

Figure 2.12: XPS schematic diagram for X-ray excitation of a 1s core electron. 

 

It is important to note that the binding energy of a core electron does not only depend on the level 

from where it originates (providing elemental composition) but also from the chemical 

environment and the formal oxidation state of the atom due to changes in the nucleus screening by 

the different electronic configuration. By comparing the shifts with reference values, quantitative 

information related to the chemical state and bonding can be determined. 
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Chapter 3: Normal-Stress Induced Mechanochemical 

Decomposition of Methyl Thiolate on Copper (100) 

3.1 Introduction 

Mechanochemical reactions are stress-induced processes in which the shape of the Born-

Oppenheimer potential energy surface is modified by an external force to reduce the energy barrier 

between metastable minima, where the transition over the modified energy barrier is thermally 

assisted and thus depends on temperature. Mechanochemical kinetics are often described by the 

Bell model,17 where the rate constant for the reaction in the absence of an external force is given 

by 𝑘0 = 𝐴𝑒𝑥𝑝 (−
𝐸𝑎𝑐𝑡

𝑘𝐵𝑇
), where 𝐸𝑎𝑐𝑡 is the activation energy,⁡𝑘𝐵 is the Boltzmann constant and 𝑇 

the absolute temperature. In this model, an external force 𝐹 modifies the energy profile by a 

potential given by −𝐹𝑥. To first order, this provides a simple equation for the reaction rate constant 

𝑘(𝐹) = 𝑘0𝑒𝑥𝑝 (
𝐹∆𝑥‡

𝑘𝐵𝑇
), where ∆𝑥‡ is referred to as the activation length, defined as a distance from 

the initial to the transition state. Since experiments generally measure the contact stress 𝜎 (force 

per unit area), the Bell model is often written as 𝑘(𝜎) = 𝑘0𝑒𝑥𝑝 (
𝜎∆𝑉‡

𝑘𝐵𝑇
), where ∆𝑉‡ is an activation 

volume, that is, the activation length multiplied by the area over which the applied stress acts. 

Similar concepts of the way in which energy landscapes are modified by an external force, were 

first used by Prandtl 2 to model crystal plasticity, and by Eyring to model energy dissipation during 

fluid shear (its viscosity).29 It was subsequently used to explain a wide range of stress-induced 

phenomena 30 such as material fracture,31 rubber friction,32 and atomic-scale friction and wear;33,34 

note that mechanically induced processes are ubiquitous in chemistry, physics and materials 

science. 
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Exponential stress dependences of mechanochemical reaction rates have been found 

experimentally,14,35–40 leading to measured values of the activation volume of ~10 Å3. However, 

the activation volume of a mechanochemical reaction cannot generally be predicted a priori. This 

occurs for a number of reasons. Neither the nature of the elementary steps in the reaction pathway 

nor the direction of the force with respect to the energy landscape are generally known for the 

systems that have been studied hitherto.41 This lack of a theoretical framework with which to 

analyze and ultimately predict the rates of tribo/mechanochemical reactions, has impeded the 

growth of the field of mechanochemistry and the development of novel lubricants, or the design 

of new mechanochemical syntheses. As a result, the subfield of mechanochemistry is significantly 

less well developed than other fields of chemistry. 

The experimental issues are addressed by accurately measuring the normal-stress induced 

decomposition kinetics of methyl thiolate (CH3‒S(ads)) overlayers on Cu(100), by an atomic force 

microscope (AFM) tip in ultrahigh vacuum (UHV) (See Figure 3.1). This reaction has been 

implicated as a crucial step in the gas-phase lubrication of copper by dimethyl disulphide 

(DMDS).42–44  

3.2 Experimental Methods 

Experiments were carried out using an RHK Variable Temperature Ultrahigh Vacuum (UHV) 750 

atomic force microscope (AFM) operating at a base pressure of ~2×10-10 Torr following bakeout. 

The apparatus also contained an analysis chamber for sample cleaning and was equipped with a 

Scienta Omicron SPECTALEED combined low-energy electron diffraction (LEED)/Auger system 

for assessing sample cleanliness and crystalline order. The chamber was also equipped with a 

Dycor quadrupole mass analyzer for leak checking and background gas analysis. The Cu(100) 

single crystal was cleaned by Argon ion bombardment (~1 kV, ~2 µA/cm2) and then by annealing 
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to ~850 K to remove any surface damage induced by the cleaning procedure. A saturated overlayer 

of methyl thiolate species was prepared by dosing a clean Cu(100) sample held at ~298 K in UHV 

by background dosing at a pressure of 1×10-8 Torr of dimethyl disulphide (DMDS, Aldrich, 99.0% 

purity) for 200 s, where the pressure was measured using a nude ionization gauge included in the 

UHV chamber, (pressures were not corrected for ionization gauge sensitivity).16 The DMDS was 

transferred to a glass bottle and attached to the gas-handling system of the vacuum chamber, and 

finally cleaned by several freeze-pump-thaw cycles. The purity was monitored using mass 

spectroscopy. Sulphur overlayers were prepared by decomposing a methyl thiolate overlayer on 

Cu(100) by heating to ~430 K for 300 s. 

 

 

Figure 3.1: (a) Atomic Force Microscope head and sample photography through a UHV viewport, with a laser beam 

trajectory represented by red lines directed towards the center of the detector (illustrative inset diagram in white lines). 

(b) Schematic representation of the initial state of the surface and AFM topography image of the flat area of study 

within a surface terrace. (c) Schematic representation of the AFM tip before (left) and while exerting contact stress 

(right) on the sample. (d) Illustration and topography image of the surface area after an experiment.  
 

Normal-stress-induced mechanochemical reactions were induced by applying a normal force using 

a silicon μ-masch (HQ:NSC19/NO AL) AFM tip with a nominal 8 nm radius. A schematic 

depiction of the mechanochemical experiment is shown in Figure 3.1 (b), (c) and (d). The 

cantilever force constant was measured from the geometry of the cantilever measured by scanning 
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electron microscopy (SEM, Figures 3.2 (a) and (b)), as described in reference [25]. SEM was also 

used to verify the integrity of the AFM tip prior to performing the experiments (Figures 3.2 (c) 

and (d)).  

 

 

Figure 3.2: Scanning electron microscopy images of the AFM tips. (a) top view of the cantilever, (b) side view of the 

cantilever, (c) low-magnification view of the silicon tip prior to the experiment, and (d) high-magnification image of 

the tip prior to experiment. Images were obtained in collaboration with Dr. D.R. Olson. 

 

Since the pressure varies as a function of distance from the center of the contact for the elastic 

contact of a spherical tip on a planar substrate,45 the extent of reaction under normal load as a 

function of time was measured from the depth at the center of the indentation formed on the 

methyl-thiolate-saturated surface, measured using contact AFM under a non-perturbative load in 

a scan area of 0.1 μm× 0.1 μm over the pre-indented region. Force-distance curves (Figure 3.3) 

measured between each indentation experiment verified that the tip shape had not changed. The 
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tips were found to remain stable over multiple indentation experiments. However, to verify that 

the nature of the tip did not influence the results, normal-stress-induced reaction rates were 

measured with two different tips. 

 

 

Figure 3.3: Series of sequential force-distance curves for a saturated methyl thiolate overlayer adsorbed on Cu(100) 

at 298 K by exposure to DMDS showing the Approach and Retract curves. 

 

3.3 Results and Discussion 

Single-asperity compression experiments were carried out on methyl thiolate overlayers formed 

by dosing DMDS on Cu(100) at room temperature (298 K) in a UHV AFM, with normal loads 𝐹𝑁 

from 40 to 118 nN, for reaction times up to ~6.3×104 s. The mechanochemical decomposition of 

a methyl thiolate overlayer creates indentations that are imaged using contact-mode AFM at non-

perturbing loads, where it was observed that the maximum depth increases with contact (reaction) 

time (Fig. 3.4). Because the elastic contact pressure varies with position within the contact,46 the 

extent of reaction was measured from the depth at the center of the indentation, where the contact 

stress is the highest, and the observed shape of the indent is in agreement with this assumption 

(Fig. 3.5).  
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Figure 3.4: Topography images of surface showing the evolution of the surface over time at various contact pressures. 

 

The depth initially increases as a function of time and eventually saturates, indicating the 

completion of the mechanochemical reaction. The time dependence of the extent of reaction obeys 

first-order kinetics with respect to methyl thiolate coverage over the whole coverage range (Figs. 

3.6).  

 

 

Figure 3.5: Typical indentation profile formed by compressing a methyl-thiolate saturated Cu(100) surface at a load 

of 69 nN for 9×103 s, compared to a fit for an elastic contact using an activation volume of 46 Å3, by assuming that 

the indentation depth is proportional to the extent of reaction. 

 

610 s 973 s 1800 s

2700 s 3600 s 7200 s

13260 s10800 s
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This kinetic order is in agreement with previous measurements of methyl thiolate decomposition 

rates obtained from the yield of gas-phase products for microscale sliding on copper in UHV.44,47,48 

Fits to the data yield first-order rate constants 𝑘(𝜎0). The contact areas were estimated from the 

widths of the indentations 𝑑 after completion of the reactions (Fig. 3.5),36 and the maximum normal 

stresses exerted at the center of the contact were calculated from: 𝜎0 = 6𝐹𝑁/𝜋𝑑
2.  

 

 

Figure 3.6: Variation in depth as a function of time, and fit assuming first-order reaction kinetics. The contact area, 

for calculating the maximum contact pressure 𝝈𝟎, is obtained from the width of indentation. 

 

A linear plot of ln(𝑘(𝜎0)) versus 𝜎0 is shown in Fig. 3.7, confirming that the reaction rate does 

vary exponentially with contact stress,14,35–39 consistent with the Bell model.17 Extrapolation to 

zero stress yields an activation energy of 105.4 ± 0.2 kJ/mol, in agreement with experimental 

measurements of the activation energy of methyl thiolate decomposition on copper.16 The slope of 

the plot in Fig. 3.7 yields an activation volume ∆𝑉‡ = 46 ± 1 Å3, similar to values previously 

measured for mechanochemical reactions on surfaces.14,35–39  
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Figure 3.7: Rates of normal-contact-stress induced mechanochemical decomposition of methyl thiolate species on 

Cu(100), showing a plot of the 𝒍 ⁡(𝒌(𝝈𝟎)), where 𝒌 is the rate constant for the mechanochemical decomposition of 

methyl thiolate overlayer on Cu(100) at 298 K, measured from the maximum depth at the center of the indentation, as 

a function of the maximum contact stress, 𝝈𝟎. The linear dependence demonstrates that the mechanochemical 

decomposition rates obey the Bell model.17 The intercept yields an activation energy for methyl thiolate decomposition 

in the absence of a normal stress of 105.4 ± 0.2 kJ/mol when using a pre-exponential factor of 1×1014 s-1, in excellent 

agreement with experimental measurements 47 and theoretical calculations.46,48  

 

Dr. Heather Adams and Nicholas Hopper carried out Quasi-static DFT calculations by 

compressing a clean Cu(100) counterface slab against a methyl-thiolate covered slab, where the 

energies and configurations were calculated for different values of slab separation.49 The results 

reveal an initial slightly attractive interaction as the slabs approach, consistent with the snap into 

contact as the tip approaches the surface (Fig. 3.3), but the interaction becomes repulsive as the 

slabs move closer together. The repulsive part of the potential varies parabolically with distance, 

enabling the normal contact stresses to be calculated. Nudged-elastic band (NEB) calculations of 

the energy barriers reveal a decrease in activation energy with increasing normal stress (Fig. 3.8 

a). Note that the calculated activation energy for zero applied stress is in excellent agreement with 

the experimental value.16  
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Figure 3.8: (a) Activation energy calculated by DFT as a function of contact stress for the normal-stress-induced 

mechanochemical decomposition of methyl thiolate species adsorbed on Cu(100).49 (b) The experimental results are 

shown plotted directly as reaction activation energy versus maximum contact stress, compared with the DFT results. 

 

The results of the calculations are compared to experiment in Fig. 3.8 (b). Note that the 

experimentally accessible normal stress range is lower than that used for the quantum calculations, 

and thus reflects only the initial, almost linear portion of the second-order curve shown in Fig. 3.8 

(a). 

It is commonly found that the activation energies for elementary reaction steps on metal surfaces 

scale with the heats of reaction,50 so that 𝐸𝑎𝑐𝑡 = 𝐸𝑎𝑐𝑡
0 + 𝛼𝐸𝑟, known as the Evans-Polanyi 

relation.51 The stress-dependent activation energy also scales linearly with the heat of reaction 

(Fig. 3.9), with 𝛼 = 0.95 ± 0.02, and is similar to values found for bond dissociation reactions on 

metals.50 
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Figure 3.9: Evans-Polanyi plot of the activation energy for methyl thiolate decomposition on Cu(100) as a function 

of normal stress, that is, Eact(σ) versus energy of reaction as a function of the normal stress, leading to a slope value α 

of 0.95 ± 0.02. 

 

3.4 Control Experiments 

In order to ensure that the indentation was not due to plastic deformation of the Cu(100) substrate, 

a sulfur overlayer was formed on Cu(100) to prevent adhesion between the tip and the substrate 

by heating a methyl thiolate overlayer to 430 K for 300 s. A low-load image showed a flat surface 

(Figure 3.10 (a)). The center of the scanned region (indicated by a red dot in Figure 3.10 (b)) was 

then compressed using a load of ~92 nN for 1.2×104 s, and showed no indentation when imaged 

with a load of ~25 nN (Figure 3.10 (c)). This confirms that the indents formed on methyl-thiolate 

covered copper are due to methyl thiolate decomposition. 
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Figure 3.10: 100 nm × 100 nm image of a sulphur-covered Cu(100) surface collected at a low load (a), and then 

compressed at the center point indicated by a red dot using a load of ~92 nN for 1.2×104 s (b). The same region was 

then imaged at a load of ~25 nN (c) and showed no indentation. 

 

To establish whether the imaged profiles of the indented regions were not perturbed by scanning 

at low loads, the evolution of the images of the indented surface was monitored by repeatedly 

collecting images of a methyl-thiolate-covered Cu(100) surface that had been indented at a load of 

~52 nN for 9×103 s; this removes ~50% of the methyl thiolate layer. Profiles across the indent 

were analyzed as a function of the number of scans (Figure 3.11) of the AFM tip by fitting the 

profile to a Gaussian function.  

 

 

Figure 3.11: Indentation profiles as a function of the number of scans of the AFM tip. 
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It can be observed that the area under the profile shows no significant variation as a function of 

the number of scans (Figure 3.12 (a)). However, the width of the indented regions does vary as a 

function of the number of scans (Figure 3.12 (b)), where a sigmoidal function is shown plotted 

with the data as a guide to the eye. This reveals that the width of the indented area depends on the 

number of scans. However, no variation in the width of the indent was found for the first three 

scans. 

 

 

Figure 3.12: Plot of the evolution of a methyl thiolate overlayer on Cu(100) indented at ~52 nN for 9×103 s to remove 

~50% of the methyl thiolate layer as a function of the number of scans when scanning at low load, displaying (a) the 

variation in the indented area and (b) the variation in the indented width as a function of the number of scans. 

 

3.5 Indentation Profiles, Reaction Rates and Pressure Distribution  

The depth of the indent is proposed to be directly proportional to the extent of the reaction. This 

assumption is tested by comparing the experimental indentation profile with that calculated using 

this assumption. The normal stress distribution 𝜎(𝑟) for an elastic contact of a sphere against a flat 

surface is given by 𝜎(𝑟) = 𝜎0√(1 −
𝑟2

𝑎2
), where 𝜎0 is the normal contact stress at the center of the 

contact, and 𝑎 is contact radius.45 According to the Bell model, the rate depends exponentially on 
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the stress: 𝑘(𝜎) = 𝑘0𝑒𝑥𝑝 (
𝜎∆𝑉‡

𝑘𝐵𝑇
), where ∆𝑉‡ is the activation volume, which is measured to be 

~46 Å3. This will result in mechanochemical reactions occurring more rapidly at the center of the 

contact, with the rate decreasing to zero at the edges; the maximum radius of the normal-stress 

induced indentation provides a direct measure of the contact radius.36 Thus, the indentation profile 

should reflect both the stress distribution and the rate at which the methyl thiolate decomposes 

mechanochemically. If the depth is proportional to the extent of reaction, this yields a depth profile 

𝑑(𝑟) given by 𝑑(𝑟) ∝ 𝑒𝑥𝑝 (
𝜎(𝑟)∆𝑉‡

𝑘𝐵𝑇
). To test whether the postulate is valid, experimental depth 

profiles were compared to this equation by normalizing the depth to unity and by using ∆𝑉‡ = 46 

Å3. A typical result is shown in Fig. 3.5, in this case, for an experiment using a load of 69 nN. The 

agreement between experiment and theory is in accord with the postulate that the indentation 

profiles are mechanochemically induced, and that the indentation depth at the center of the profile 

is a measure of the mechanochemical reaction rate. In this case, the normal stress at the center of 

the contact is given by 𝜎0 =
1.5𝐹𝑁

𝜋𝑎2
 , where 𝐹𝑁 is the normal force exerted by the AFM tip. 

3.6 Measurement of Reaction Rates and Activation Energies 

Previous experiments to measure the rate of stress-activated decomposition of methyl thiolate 

species on copper from the evolution of gas-phase products,44 show that the reaction is of first 

order in methyl thiolate coverage:−
𝑑𝜃𝑡ℎ

𝑑𝑡
= 𝑘(𝜎)𝜃𝑡ℎ, where 𝜃𝑡ℎ is the relative coverage of methyl 

thiolate species. Taking the initial relative methyl thiolate coverage to be unity, and integrating the 

rate equation gives: 𝜃𝑡ℎ(𝑡) = (1 − exp⁡(−𝑘(𝜎)𝑡)), and fits to this equation, carried out using 

Origin software, are shown in Figs. 3.6, confirming that methyl thiolate decomposition on Cu(100) 

measured by AFM under the influence of a normal stress obeys first-order kinetics over the whole 



www.manaraa.com

 

35 

 

coverage range. The values of 𝑘0 and ∆𝑉‡ are extracted directly from plots of ln⁡(𝑘(𝜎0)) versus 

𝜎0 (Fig. 3.7), where the intercept equals ln⁡(𝑘0) and the slope is ∆𝑉‡/𝑘𝐵𝑇, where 𝑇 is the reaction 

temperature (298 K). An activation energy is obtained from 𝑘0 by assuming a pre-exponential 

factor of 1×1014 s-1.47 

3.7 Conclusions 

In summary, precise measurements of the mechanochemical reaction kinetics of the normal-stress 

induced decomposition of a well-defined model system consisting of a methyl thiolate overlayer 

on a Cu(100) single crystal substrate, reveal that the reaction rate increases exponentially with 

normal stress, with an activation volume of 46 ± 1 Å3 and an activation energy in the limit of zero 

stress that is in good agreement with that for the thermal reaction. 

In order to understand the decomposition kinetics of methyl thiolate species on Cu(100), we 

compared the experimental variation in activation energy as a function of applied stress with 

modelled quasi-static first principle DFT calculations. The corresponding activation energies 

results are in excellent agreement with experiment.  

Analysis of the quasi-static DFT calculations for this system49 reveal that the final state is also 

stabilized by the normal stress, where the stress-dependent activation energy varies linearly with 

the overall heat of reaction, and thus obeys the Evans-Polanyi relation. Such linear free energy 

relationships have been very useful in analyzing catalytic reaction pathways 52–55 and are likely to 

be similarly useful for describing mechanically induced reactions. 

Importantly, the ability to predict mechanochemical reaction kinetics using quasi-static DFT 

calculations will set the stage for studying mechanical activation for stresses that do not necessarily 

coincide with the lowest-energy pathway, as well as for studying more complex mechanochemical 

systems. This will aid in further developing robust theories for mechanochemical activation and 
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for ultimately predicting mechanochemical activity. The next chapter focuses in the study of 

combined effects of normal and lateral stresses on mechanochemical reaction rates.  

Finally, the availability of simple, but precise models for calculating the variation in reaction 

activation energy with applied stress will allow the velocity and temperature dependences of 

mechanochemical reaction rates to be predicted using a similar approach to that in the Prandtl-

Tomlinson model for frictional energy dissipation.2,30,33,40 
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Chapter 4: Lateral - Stress Anisotropy of Mechanochemical 

Reaction Rates 

4.1 Introduction 

The description of mechanochemical reaction kinetics is provided by the Bell model as outlined 

in Chapter 3. This model is framed within a description of the Born-Oppenheimer potential energy 

surface (BO-PES), 𝑈(𝑟), which provides the basis for the Bell theory and models the energy of 

chemical systems as a function of the positions of the atoms, 𝑟, by solving the Schrödinger equation 

for the electronic energy of the system using fixed nuclear positions, and thus makes the Born-

Oppenheimer approximation. Local minima in the potential energy surface correspond to stable 

configurations of the system, and the energy differences between these metastable states 

correspond to their reaction enthalpies. Reaction occurs by the system transiting an energy barrier 

with a height 𝐸𝑎𝑐𝑡, known as the activation energy, defined with respect to the reactant state, to 

move to the final (product) state. The barrier occurs at a saddle point in the potential energy 

surface, known as the transition state, and the configuration at this point in the potential energy 

surface is known as the activated complex. The rate of the reaction is then given by the vibrational 

frequency of the normal mode on the activated complex that leads to a particular product. The 

reaction rate constant 𝑘 is given by: 

 

     

 𝑘 = 𝜅
𝑘𝐵𝑇

ℎ
(
𝑍‡

𝑍𝑟𝑒𝑎𝑐𝑡
) 𝑒𝑥𝑝 (−

𝐸𝑎𝑐𝑡
𝑘𝐵𝑇

) (4.1) 
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where 𝑍 represents the partition function for the reactant and transition states for one mole of 

material under standard conditions, but where the partition function for the transition state excludes 

the contribution from the normal mode that leads to product formation.56 The parameter 𝜅 is known 

as the transmission coefficient, and indicates the probability of each vibration in the normal mode 

of the transition state leading to product formation. However, values of 𝜅 can be calculated for 

various forms of the potential energy profile using Kramer’s rate theory,57,58 which implicitly 

assumes that the system is in thermal equilibrium, so that the population of the activated complex 

relative to the reactant is given by a Boltzmann distribution. Thus, the reaction rate constant 

depends on the value of 𝐸𝑎𝑐𝑡 and the partition functions of the reactant and activated complex. 

The central assumption that underpins mechanochemical rate theories is that the potential due to 

the imposed mechanical force modifies the PES to change the energies and positions of the reactant 

and transition states, modifying the energy barriers and thereby altering the rate of reaction. When 

the rate is increased relative to the rest state, this results in the occurrence of mechanochemical 

reactions. If the applied force is 𝐹, then the PES is modified to give, 

 

    

 𝑈(𝑟, 𝐹) = 𝑈(𝑟) − ∫𝐹 ∙ 𝑑𝑟 (4.2) 

 

In the simplest analysis of the model, the force 𝐹 is assumed to be constant and act along the 𝑥 

direction, so that ∫𝐹 ∙ 𝑑𝑟 = 𝐹𝑥. This leads to a first-order equation for the force-dependent 

activation as 𝐸𝑎𝑐𝑡(𝐹) = 𝐸𝑎𝑐𝑡 − 𝐹∆𝑥
‡, where ∆𝑥‡ corresponds to the distance from the initial to 

the transition state. This corresponds to the Bell model, and the results of Chapter 3 indicate that 

the equation should be modified to include second-order effects of the force in the positions of the 
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initial and transition states that lead to a 𝐹2 dependence, known as the extended-Bell model, which 

was verified in Chapter 3.59 This analysis assumes that the applied force is aligned with a 

component of the reaction coordinate, and the experimental conditions selected in the work 

described in Chapter 3 ensured that this was the case. However, this condition will not always be 

fulfilled for lateral forces acting on adsorbed methyl thiolate species on copper, where evidently 

the force will generally not be aligned along the reaction coordinate. In order to analyze this model, 

several researchers have analyzed the force-dependent trajectories as a function of the direction of 

the force.60–63 In order to explore this issue for the lateral-force dependent rate of methyl thiolate 

decomposition on Cu(100), we used a model two-dimensional PES with a fixed energy barrier but 

with a strongly varying energy landscape. These results are then used to analyze experimental data 

for the decomposition of methyl thiolate species on copper caused by lateral sliding measured in a 

UHV atomic force microscope. 

4.2 Influence of Lateral Force in Mechanochemical Reaction Rates 

To understand the influence of lateral force on the mechanochemical reaction rate, theoretical 

calculations have been carried out. This work has been done in the context of a collaboration with 

Dr. Germaine Djuidje Kenmoe and consists of a specific adaptation of the model described in ref. 

[41]. In order to model methyl thiolate decomposition, a two-dimensional potential was used. This 

is a modified Remoissenet-Peyrard (R-P) potential 64 that has suitable properties and is given by, 

 

 𝑉(𝑥. 𝑦) =
𝐸𝑎𝑐𝑡(1 + 𝑟

2)(1 − cos(𝜋𝑥 𝑎⁄ ) cos(
𝜋𝑦

𝑎⁄ ))

(1 + 𝑟2 + 2𝑟 cos(𝜋𝑥 𝑎⁄ ) cos(
𝜋𝑦

𝑎⁄ ))
 (4.3) 
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where 𝑎 is the periodicity of the lattice and 𝑟 is a parameter such that |𝑟| < 1 that influences the 

shape of the potential. When 𝑟 = 1, this yields a two-dimensional sine function. 

The function has a periodic global minimum at 𝑥 = 𝑦 = 0, so that cos(𝜋𝑥 𝑎⁄ ) = cos(
𝜋𝑦

𝑎⁄ ) = 1, 

which, when substituted into Eqn. 4.3, gives, 

 

 𝑉(0,0) = 𝐸𝑚𝑖𝑛 = 0 (4.4) 

 

A saddle point occurs at 
𝑥

𝑎
=

𝑦

𝑎
=

1

2
. This yields: cos(𝜋𝑥 𝑎⁄ ) = cos(

𝜋𝑦
𝑎⁄ ) = 0, and substituting 

into Eqn. 3 gives, 

 

 𝑣(1,1) = 𝐸𝑠𝑎𝑑𝑑𝑙𝑒 = 𝐸𝑎𝑐𝑡 (4.5) 

 

so that Eqn. 4.3 is adjusted so that 𝐸𝑎𝑐𝑡 corresponds to an activation energy. Note, however, that 

this model function is an approximation because the transition state will not necessarily occur at 

𝑥

𝑎
=

𝑦

𝑎
=

1

2
. Thus, the reaction coordinate as the system evolves from the reactant to the product 

follows 𝑥 = 𝑦, and ∆𝑥‡ =
𝑎

√2
. A representation of the PES is shown in Figure 4.1. 
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Figure 4.1: Modified R-P potential for the potential energy surface utilized. 

 

The maximum in the potential occurs at 
𝑥

𝑎
= 0,

𝑦

𝑎
= 1, and gives cos(𝜋𝑥 𝑎⁄ ) = 1, cos(

𝜋𝑦
𝑎⁄ ) = −1 

and yields, 

 

 𝐸𝑚𝑎𝑥 = 2𝐸𝑎𝑐𝑡
1 + 𝑟2

(1 − 𝑟)2
 (4.6) 

 

so that the relative height of the potential on either side of the saddle point depends on the value 

of 𝑟. Thus, as 𝑟 → 1, the height of the barrier increases. However, the effect of 𝑟 in the energy 

barrier depends on the direction we travel through the potential energy surface, being the change 

maximum when we travel across a maximum (𝑥 + 𝑦 = 1), and neglegible through the saddle point 

(𝑥 = 𝑦), as shown in Figure 4.2. It can be anticipated that, as the height of the potential maximum 

increases, the reaction will be funneled through the lowest-energy pathway and will follow a 

sinusoidal dependence.  

The value of 𝑟 for any particular value of 𝐸𝑚𝑎𝑥/𝐸𝑎𝑐𝑡 can be calculated from: 
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 𝑟 =
(
𝐸𝑚𝑎𝑥
𝐸𝑎𝑐𝑡

) − 2√1 + (
𝐸𝑚𝑎𝑥
𝐸𝑎𝑐𝑡

)

(
𝐸𝑚𝑎𝑥
𝐸𝑎𝑐𝑡

) − 2
 (4.7) 

 

 

Figure 4.2: (a) Energy profiles along x=y (lowest-energy pathway), and (b) along x+y=1 (across a maximum), though 

the transition state, as a function of +r. 

 

Considering the potential energy surface (PES) 𝑈(𝑟) from equation 4.3, as a function of the vector 

𝑟, where reaction products/intermediates correspond to local minima of the PES, when a force 𝐹 

is applied, the locations of those minima are shifted to new mechanical equilibria according to 

Newton’s law, requiring the total force to be zero or ∇𝑈 = 𝐹. The solution of this equation is also 

a minimum of the force-modified potential, 𝑈(𝐹, 𝑟) = 𝑉(𝑟) + 𝐹 ⋅ 𝑟. The dependence of a reaction 

rate 𝑘 on the applied force 𝐹 is given by, 

 

 𝑑 ln 𝑘
𝑑𝐹⁄ ≈

∆𝑥‡

𝑘𝐵𝑇
≡
𝑥𝑇𝑆 − 𝑥𝑅
𝑘𝐵𝑇

 (4.8) 
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When the force 𝐹 is close to its critical value 𝐹𝑐, when the activation barrier 𝐸𝑎𝑐𝑡 vanishes, the 

transition rate can be approximated by, 

 

 k(𝐹) = 𝑘(0)𝑒𝑥𝑝 [
∆𝑉‡(0)

𝑘𝐵𝑇
(
𝐹𝑐 − 𝐹

𝐹𝑐
)
3 2⁄

] (4.9) 

 

where ∆𝑉‡(0) is the activation barrier at zero force.41  

The activation length ∆𝑥‡ vanishes as the system approaches the critical force 𝐹𝑐 (catastrophic 

point) as, 

 

 ∆𝑥‡(𝐹) = ∆𝑥‡(0) (
𝐹𝑐 − 𝐹

𝐹𝑐
)
1 2⁄

 (4.10) 

 

where ∆𝑥‡(0) =
3∆𝑉‡(0)

2𝐹𝑐
 . 

From this, one can calculate the evolution of the PES as a function of the applied directional force, 

as shown in Figure 4.3.  
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Figure 4.3: Example of results from theoretical calculations showing the PES in absence of force (initial state), at the 

force in which minimum and saddle points meet (final state), and tracking of displacement of minimum (red dots) and 

saddle points (blue dots) as a function of applied force from the initial to the final state on top of final state contour 

plot. 

 

 

Figure 4.4: Theoretical results of activation barrier as a function of force until the energy barrier vanishes for different 

values of 𝒓 and azimuthal angle of the applied force. 
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Figure 4.5: (a) Close up view of theoretical results of activation barrier as a function of force until the energy barrier 

is reduced to ~10% of its initial value, for different values of 𝒓 and azimuthal angle of the applied force. (b) Relative 

change in activation length as a function of azimuthal angle of the applied force.  

 

The results are summarized in Fig. 4.4-5, which shows the variation in energy barrier as a function 

of azimuthal angle for the model R-P potential for various values of 𝑟. As can be seen, the angular 

dependence does not depend on the values of 𝑟, but only on the initial- and transition-state energies, 

and is independent of the path taken between them. This is not surprising and is just an expression 

of the first-law of thermodynamics, and was used to analyze the influence of external potentials, 

including hydrostatic pressure, on the rates of chemical reactions by Evans and Polanyi.51 This 

enables a general equation for the stress-dependent energy barrier to be derived by expanding the 

force about the initial and transition states, independent of the reaction pathway between them. 

This is illustrated in the next section. 
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4.2.1 Mechano-tribochemical Reaction Rates in Three Dimensions 

The goal is to solve Eqn. 4.2 by expanding the PES around the initial and transition states. Because 

they are both turning points for which ∇. 𝑈(𝑟)=0, the linear term in the expansion is zero, and the 

first non-zero terms is quadratic; this is an expression of Hooke’s law. Therefore, the expansion of 

the PES has terms due to (i) the force-dependent changes in the positions of the initial and 

transitions states and (ii) the work required to convert the initial-state structure into the activated 

complex. Both the linear and quadratic terms have been identified in Chapter 3. In addition, as 

emphasized in that work, the reaction rate is not measured from the force acting directly on the 

reactant (the mechanophore), but from the applied stress (the force per unit area). This can, of 

course, be converted into the force acting on the mechanophore if the number of molecules per 

unit area is known. This can be described by the stress tensor, 𝜎𝑖𝑗 = (

𝜎11 𝜎12 𝜎12
𝜎21 𝜎22 𝜎13
𝜎31 𝜎32 𝜎33

). In this 

case, the diagonal terms indicate normal stresses in the 𝑥, 𝑦 and 𝑧 directions, and the off-diagonal 

terms denote shear stresses, so that the stress tensor can also be written as: (

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

), 

which includes symmetry by taking account of the equivalence of 𝑥, 𝑦 and 𝑧. This leads to an 

equation for the change in energy barrier in three dimensions as a function of the stress tensor 𝜎𝑖𝑗 

as, 

 

 𝐸𝑎𝑐𝑡(𝜎) = 𝐸𝑎𝑐𝑡 − (𝑉𝑖𝑗
𝑡 − 𝑉𝑖𝑗

𝑖 )𝜎𝑖𝑗 −
1

2
(Ω𝑖𝑗𝑘𝑙

𝑡 − Ω𝑖𝑗𝑘𝑙
𝑖 )𝜎𝑖𝑗𝜎𝑘𝑗  (4.11) 

 

where 𝑉𝑖𝑗
𝑡,𝑖 =

𝜕𝑈𝑡,𝑖

𝜕𝜎𝑖𝑗
 and Ω𝑖𝑗𝑘𝑙

𝑡,𝑖 =
𝜕2𝑈𝑡,𝑖

𝜕𝜎𝑖𝑗𝜕𝜎𝑘𝑙
. The term 𝑉𝑖𝑗

𝑡 − 𝑉𝑖𝑗
𝑖  represents the change in volume of the 

system between the transition and initial states of the reaction and is known as the activation 
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volume, ∆𝑉‡, and the term Ω𝑖𝑗𝑘𝑙
𝑡 − Ω𝑖𝑗𝑘𝑙

𝑖  represents the change in curvature between the initial and 

transition states and gives rise to the second-order term in the extended-Bell model. 

Clearly, the direction of the applied stress can influence the reactivity. For example, if a force 

applied in a particular direction lowers the energy barrier and accelerates the rate of a reaction, a 

force directed in the opposite direction will increase the barrier and inhibit the reaction. One can 

also imagine that an appropriately applied force could change the selectivity of a reaction by 

specifically lowering a barrier that is slightly higher than the barrier for the lowest-energy pathway. 

The mechanochemical reaction rate could also be influenced by the way in which the force is 

applied, for example, for a mechanophore anchored to a surface compared to in a liquid. These 

differences are highlighted by widely varying the values of the activation volume measured in a 

fluid 14 and on a surface.35 These issues are discussed in greater detail in the next section. 

4.2.2 Coupling of Forces to the Mechanophore in Mechano-tribochemical Reactions 

As noted above, the way in which forces are applied to molecules in a fluid and on a surface will 

be different. In the pressure-induced reactions discussed above, these are induced by the 

hydrostatic pressure 𝑃 =
1

3
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) and will presumably accelerate reactions that are 

initiated by compression of the whole molecule. Cases in which forces are exerted by fluid shear 

are more complicated because the stress distribution depends on the geometry and, for example, 

the stress is uniform during Couette flow. 

We will examine this issue for a mechanophore adsorbed on a surface with applied normal (𝜎𝑧) or 

shear (𝜏𝑥𝑦) stresses. The effect of the applied force is to modify the potential energy surface by an 

additional term ∫𝐹 ∙ 𝑑𝑟. That is, the external force will act to displace the atoms in the 

mechanophore, thereby influencing the energy barrier between the initial and transition state to 

modify the reaction rate. The displacement of atoms from their equilibrium positions are well 
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described within a Harmonic approximation, where the Hessian (force-constant matrix) can be 

diagonalized for the 3𝑁 vibrations of an N-atom system to form 3𝑁 normal modes, three of which 

correspond to molecular translations in the 𝑥, 𝑦⁡𝑎𝑛𝑑⁡𝑧 directions and rotations about these axes, 

and 3𝑁 − 6 internal normal modes. The symmetry of these normal modes (their irreducible 

representations) depend on the geometry of the molecule and can be obtained using group theory. 

For a particular symmetry-adapted linear combination of atomic displacements to result in a 

modification of the potential energy surface, the integral ∫𝐹 ∙ 𝑑𝑟 must be non-zero, and thus 

belong to the totally symmetric irreducible representation. Although it has been proposed that 

molecular symmetry is conserved during the trajectory from the initial to the transition state,65 this 

has been found not to be true in all cases.66 However, the structure of the initial state, as it evolves 

on its journey to the transition state, must interact with the applied stress such that, for the integral 

above to be none-zero, the symmetry adapted vibrational modes and the applied stress must have 

the same symmetry. Note that the symmetry rule says nothing about the extent to which the 

particular vibrational state influences the reaction rate. This idea is illustrated for a diatomic 

mechanophore adsorbed with its principle axis perpendicular to the surface (along the 𝑧 direction) 

on a four-fold site, intended to mimic the adsorption on the four-fold hollow site of the (100) face 

of a face-centered cubic metal (copper). The terminal “atom” of the mechanophore could be an 

unreactive species such as a methyl group. This structure models a methyl thiolate mechanophore 

adsorbed on a Cu(100) surface. It has been previously shown that this undergoes decomposition 

under shear.44,47,67 

This structure has 𝐶4𝑣 symmetry and the irreducible representations for orthogonal displacements 

of the atoms, Γ = 2𝐴1 + 2𝐸, and thus has two singly degenerate and two doubly degenerate 

symmetry adapted displacements. The lateral translations (𝑇𝑥, 𝑇𝑦) correspond to diffusion of the 
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molecule along the surface in the 𝑥 or 𝑦 directions and has 𝐸 symmetry, while 𝑇𝑧, with 𝐴1 

symmetry, corresponds to desorption of the molecule or compressions against the surface. 

The frustrated rotations (𝑅𝑥, 𝑅) correspond to tilts in the 𝑥 or 𝑦 directions and also has 𝐸 symmetry. 

The remaining 𝐴1 displacement corresponds to the bond extension. These results and the stresses 

that induced these reactions are summarized in Table 1. 

 

Motion Irreducible Representation Inducing Stress 

Molecular Tilt, (𝑅𝑥, 𝑅𝑦)   E 𝜎𝑥𝑧 , 𝜎𝑦𝑧 

Molecular Diffusion (𝑇𝑥 , 𝑇𝑦) E 𝜎𝑥𝑧 , 𝜎𝑦𝑧 

Desorption/Bond Extension 𝐴1 𝜎𝑥 + 𝜎𝑦 , 𝜎𝑧 

Bond Compression/Dissociation 𝐴1 𝜎𝑥 + 𝜎𝑦 , 𝜎𝑧 

  

Table 1: Symmetry properties of the stress induced decomposition of a pseudo diatomic species adsorbed on a four-

fold hollow surface site. 

 

The last column in the Table shows the stresses (taken from the Character Table) that induce the 

reactions. The work on Chapter 3 that examined the effect of a normal stress (𝜎𝑧), shows that 

reactions initiated by normal modes with 𝐴1 symmetry will be affected. This motion will involve 

desorption of the molecule or bond extension if 𝜎𝑧 is tensile, or bond compression if the applied 

force in compressive. 

Shear stresses along the 𝑥 or 𝑦 directions can lead to either molecular tilt, which couple with the 

transitions state for dissociation, or translation, that will result in molecular diffusion across the 

surface and thus lead to no mechanochemical reaction. Note that this lateral motion will also 

include compression, so that the overall tribochemical reaction rate will be due to both normal and 

lateral (shear) stresses the effects. The results of these measurements are described below. 
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4.3 Experimental Methods 

The instrumental setup, sample preparation and dosing conditions utilized in this section are as 

used and described in Chapter 3. Lateral force experiments, in which not only normal stress is 

exerted but also sliding of the tip on the Cu(100) surface, are described here. A convenient flat 

area of ~200 nm × 200 nm was chosen by searching within steps of the surface by scanning with 

non-perturbing forces. An image of this initial state of the surface is shown in Figure 4.6 (a). Then, 

a small line of 30 nm in length is rubbed under a well-defined load for 256 cycles of trace and 

retrace sliding of the tip at a speed of 90 nm/s; schematics of this step is depicted in Figure 4.6 (b). 

Finally, a 90 nm × 90 nm area is imaged at non-perturbing loads to observe the effects of the 

sliding cycles; a representation and topography image of two equivalent line experiments is shown 

in Figure 4.6 (c).  

 

 

Figure 4.6: Schematic representation of (a) sliding experiment and topography images showing an initial experimental 

area, (b) schematics of the sliding of the tip on the surface and the reading of the detector for the trace and retrace 

direction and (c) final two rubbed equivalent lines of 30 nm in length each. 
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Next, the angle of the sliding direction is varied while all other conditions were kept constant. Note 

that the lateral force could not be measured in this experiment because the tilt of the AFM 

cantilever could not be measured at all angles. Here, the variation in depth of the groove, as 

described in Chapter 3, is considered to be a measure of extent of reaction for the 

mechanochemically induced process. In this particular section, the anisotropy of lateral-force-

induced mechanochemistry is studied as a function of angle for reaction of the methyl thiolate 

mechanophore on Cu(100). The experimental angles were measured relative to the [110] directions 

of the copper single crystal surface, where the lattice direction was calibrated by using the low-

energy electron diffraction (LEED) pattern of the clean Cu(100) surface. The crystal directions 

were obtained by orienting the sample using the normal axis, shown as 𝑦 in Figure 4.7(a), using 

the LEED pattern, then the scanning direction 𝑥 is transformed to the crystal direction from Figure 

4.7(b), and the experimental angles corrected by defining 0o to be along the [110] crystal direction 

as illustrated on Figure 4.7(c).  

 

 

Figure 4.7: (a) Photograph of the sample with the tip after approach used for calibrating the relative angles with 

respect to the [110] crystal direction obtained from in-situ LEED diffraction pattern shown in (b), and (c) schematic 

diagram of the Cu(100) surface, where the crystal directions and the lattice constant are depicted, and the methyl 

thiolate molecule is adsorbed at a four-fold site.  
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4.4 Results and Discussion 

4.4.1 Angular Dependence of Lateral Force on Mechanochemical Process 

An entire set of topography images is shown in Figure 4.8, from which the maximum depth is 

extracted as a function of angle for each of the 30-nm-long linear sliding experiments. 

 

 

Figure 4.8: Experimental topography images of a 30 nm line sliding as a function of angle experiment under 20 nN 

normal load, at a scan speed of 90 nm/s for 256 scans back and forth.  

 

 

The normalized maximum depth of the indentation as a function of angle for a sliding experiment 

with a normal force of 40 nN is shown in Figure 4.9. It is observed that, under this applied normal 

load, the groove reaches its maximum depth for all sliding angles, indicating that the reaction is 

complete. This is confirmed by carrying out these experiments at higher normal stresses and 

finding no further increase in depth. This maximum depth is equal to that found for normal-stress 

experiments (see Chapter 3) when the reaction was complete. A repeat set of data collected under 

identical conditions, but for a different range of angles, is shown in Figure 4.10 with identical 

results, suggesting that the experiments are reproducible.  
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Figure 4.9: Line normalized depth as a function of angle in a range from 0° to 40o and 180° to 220o in steps of 5o. 

Data were collected after 256 sliding cycles under 40 nN normal load over lines of 30 nm in length at a sliding speed 

of 90 nm/s. 

 

 

Figure 4.10: Line normalized depth as a function of angle in a range from 90° to 130o and 270° to 310o in steps of 5o. 

Data were collected after 256 sliding cycles under 40 nN normal load over lines of 30 nm in length at a sliding speed 

of 90 nm/s. 

 

The load was decreased to 20 nN, and these lower loads yielded the results observed in Figure 

4.11, where the reaction did not proceed to completion and some anisotropy was observed, giving 

a maximum value of the extent of reaction along an angle coincident with the [110] direction of 

the Cu(100) single crystal surface. Note that this is the direction of the lowest-energy 

decomposition pathway for methyl thiolate species on copper.  
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Figure 4.11: Normalized depth as a function of angle in a range of 45o for equivalent (-10°) - 35o and 170° - 215o 

angular ranges (the angles are normalized to 0o being aligned with [110] surface direction). Data were collected after 

256 sliding cycles under a load of 20 nN with a scan amplitude of 30 nm, at a sliding speed of 90 nm/s. 

 

In order to investigate whether the reaction data are compatible with the methyl thiolate 

decomposing on the copper surface, we extend the simple model for reaction by compression 

(Chapter 3) to one which includes the effect of lateral sliding. We assume that the contact area for 

the sliding experiment is identical to that measured for just the normal load, where the contact area 

and pressures can be measured from the size of the indent. This allows the maximum contact 

pressure to be calculated as 0.12 ± 0.02 GPa for the normal load of 40 nN, and 0.065 ± 0.008 GPa 

for a load of 20 nN. Note that these contact stresses are much lower than those needed to initiate 

methyl thiolate decomposition under normal stress alone. In that case, the extent of reaction was 

gauged from the loss of methyl thiolate species at the center of the contact, and the reaction time 

was simply the time that tip was in contact with the surface. In the case of sliding, reaction is 

initiated as the tip starts to slide over a molecule on the surface. The contact pressure then increases 

to a maximum value (given above) in the center of the contact, and then decreases once again as 

the tip contact moves to the edge of the contact region. In this case, ideally, the reaction rate should 

be integrated over this stress distribution. However, because the model is relatively simple and 
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does not include the effects of coupling the normal and lateral stresses, we will calculate the rate 

by simply using the average contact pressure, which for the 40 nN load is 0.08 ± 0.01 GPa and for 

the 20 nN load is 0.043 ± 0.005 GPa. 

The total dwell (reaction) time at this load 𝑡𝑑 is given by 𝑡𝑑 =
2𝑁𝑆𝑤

𝑣
, where 𝑁𝑆 is the number of 

scans and the factor 2 takes account of the fact that the tip moves in both directions, 𝑤 is the width 

of the contact and 𝑣 is the sliding velocity (90 nm/s). Previous work has shown that the width of 

the contact is 24.6 nm, and gives a time per pass of 0.273 s for a total dwell time of 140 s. As noted 

above, we assume that the lateral and normal forces act independently, and to first order (that is, 

within the approximation of the Bell model), the activation energy is given by, 

 

 𝐸𝑎𝑐𝑡(𝜎𝑁 , 𝜎𝐿) = 𝐸𝑎𝑐𝑡
0 − ∆𝑉𝑁

‡𝜎𝑁 − ∆𝑉𝐿
‡(𝜃)𝜎𝐿 (4.12) 

 

where 𝜎𝑁 and 𝜎𝐿 are the normal and lateral stresses, and ∆𝑉𝑁
‡
and ∆𝑉𝐿

‡
 are the activation volumes 

for normal and lateral sliding, where the angular dependence of the lateral activation volume has 

been explicitly included. It will be assumed that the activation volume for normal stress is identical 

to that measured previously (Chapter 3, 46.4 Å3), and that it does not depend on the scanning 

direction. 

Because it is not possible to measure the lateral force, only the applied normal force, for different 

scan angles, it is assumed that the lateral force is identical for all scan angles and dictated by the 

friction coefficient 𝜇, so that the equation for the activation energy becomes, 

 

 𝐸𝑎𝑐𝑡(𝜎𝑁) = 𝐸𝑎𝑐𝑡
0 − (∆𝑉𝑁

‡ − 𝜇∆𝑉𝐿
‡(𝜃))𝜎𝑁 (4.13) 
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Figure 4.12: A friction loop for forward and reverse sliding under a load of 20 nN. 

 

The friction coefficient is obtained from the friction loop as illustrated in Figure 4.12, where the 

lateral force is obtained from the deflection between the forward and reverse scans. Using the force 

constant for torsion of 9 N/m yields 𝜇~1. A similar measurement for an experiment with a 40 nN 

leads to 𝜇~0.8, so we take and average of 0.9. The activation energy at zero stress for methyl 

thiolate decomposition has been measured previously, and thus yields an equation for the stress-

dependent rate constant, 

 

 𝑘(𝜎𝑁 , 𝜃) = 𝑘0𝑒𝑥𝑝 (
(∆𝑉𝑁

‡ − 𝜇∆𝑉𝐿
‡(𝜃))𝜎𝑁

𝑘𝐵𝑇
) (4.14) 
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where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature (298 K). The extent of 

reaction is then calculated by assuming first-order kinetics for an initially saturated overlayer of 

methyl thiolate on copper, with the only variable parameter being ∆𝑉𝐿
‡
. Note that it is possible that 

the normal and lateral degrees of freedom act in concert to accelerate the reactions rate. For 

example, for normal compression, the energy barrier is lowered by stabilization of the initial state. 

If the methyl thiolate tilts under the influence of a lateral stress, this may cause additional changes 

to the initial-state energy that are not captured by the simple linear model. A relatively small 

difference in normal load from 20 to 40 nN causes a significant difference in reaction rate (compare 

Figs. 4.9 and 4.10 with Fig. 4.11), which should be captured by this simple model.  

  

 

Figure 4.13: Comparison of the experimental variation of the rate of methyl thiolate decomposition as a function of 

scan angle using a load of 20 nN (■), with the variation predicted by the simple model using a value of the lateral 

activation volume of 590 Å3 (●). Shown for comparison is the prediction of the model using this value of activation 

volume for a normal load of 49 nN (▼). 

 

The results are displayed in Fig 4.13, where the agreement between experiment (■) and theory (●) 

is reasonable, and the results indicate that the methyl thiolate species completely decompose using 

a tip load of 40 nN, as found experimentally. However, the fit requires an activation volume of 
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~590 Å3, which seem unphysically large, and certainly much bigger than the activation volume for 

normal stress. This may be due to the effects described above, in which the lateral force causes the 

appearance of a much more complaint initial state. It could also be that the formation of the grooves 

seen in Fig. 4.9 are not due to methyl thiolate decomposition, but just the lateral motion of the 

methyl thiolate species out of the rubbed region. Recent calculations of the diffusion barrier for 

methyl transport from one site to another, show that it proceeds along a similar direction with 

respect to the surface as the decomposition of methyl thiolates, so that sliding direction of the 

maximum rate cannot be used to distinguish the two reactions. In addition, the activation barrier 

for diffusing has been calculated (by Nicholas Hopper) to be ~45 kJ/mol. Assuming a reasonable 

pre-exponential factor for lateral diffusion,68 predicts significant mobility of methyl thiolates on 

copper even in the absence stress. This has been observed from the evolution of the indents formed 

during compression (see Chapter 3).  

4.5 Conclusions 

In summary, AFM sliding experiments on a methyl thiolate overlayer on Cu(100) model system 

have been carried out, and is demonstrated to be a suitable approach to understanding the combined 

influence of normal and shear stresses. While under the conditions here reported (normal stresses 

of 0.08 ± 0.01 GPa and 0.043 ± 0.005 GPa, dwell time of 140 s), normal-stress experiments in 

absence of sliding would produce only a small extent of reaction (on the order of 1-2%), under the 

influence of a combined normal and shear stress, the reaction proceeds to completion at a normal 

stress of 0.08 ± 0.01 GPa independent of the sliding direction. Furthermore, at the lower load, 

anisotropy is evidenced and reveals a maximum extent of reaction when the azimuthal angle of 

sliding is colinear with the minimum energy pathway for the diffusion of the mechanophore across 

the surface.  
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This model system envisions new horizons for studying decomposition and diffusion as 

mechanochemical activated processes with potential applications in the field of tribology from 

both experimental and theoretical perspectives. 
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Chapter 5: Model System for Studying Chemistry in 

Confined Spaces – Two-Dimensional Silicates 

5.1 Introduction 

Silicates are by far the most abundant materials in the earth’s crust. However, fundamental 

understanding of the surface properties of silicates down to the atomic scale is limited given the 

difficulty of studying these non-conductive materials using surface-science methods. Only in the 

last decade, well-defined model systems for surface-science studies of silicates and 

aluminosilicates have been developed.69 The materials discussed in this chapter consist of bilayer 

(alumino)silicate structures synthesized on a metallic support. Side and top views of the structure 

are shown in Fig. 5.1. The maximum Al content is given by the stoichiometry AlxSi1-xO2, where  

0 ≤ x ≤ 0.5. In addition to allowing surface-science studies of silicates, these bilayer materials also 

provide a platform for the study of confinement effects, both inside the nanocages in the structure 

and at the interface with the metal support. The scarcity of model systems for studying chemistry 

in confined spaces has limited the advancement in this field. While some work studying interfacial 

confinement has been carried out for traditional 2D materials such as graphene and boron nitride, 

the silicates described here also allow easier access of small molecules to the interface through the 

nanopores in the structure.70 These two-dimensional materials offer an alternative method for 

selectively applying forces to reactants in addition to the strategy of imposing and external force 

using a tip against a flat surface discussed in the body of the thesis. As our understanding of the 

mechanisms that underpin tribo- and mechanochemical reactions develop, such materials with 

confined spaces could provide an ideal reaction environment for such reactions. 



www.manaraa.com

 

61 

 

 

 

Figure 5.1: Side and top views of bilayer aluminosilicates on a metal support. The yellow circles can be Si or Al. Red 

circles are O from the silicate framework. Pink circles are O atoms chemisorbed on the metal. Large gray circles are 

the metal support atoms.  

 

We discuss experimental and theoretical efforts to understand these materials using two-

dimensional models, in the context of a collaboration with the Interface Science and Catalysis 

group at Brookhaven National Laboratory. In the first experiments, we to study the interaction of 

noble gases with these bilayer silicate materials using ambient pressure X-ray photoelectron 

spectroscopy at the X1A1 beamline at the National Synchrotron Light Source (NSLS).  

The results of these experiments led to postulating this system as a potential candidate for studying 

the interaction with noble gases in confined spaces. This will be discussed in section 5.3.1. In 

section 5.3.2, the synthesis of a layered ionic doped silicate called Hexacelsian is described. 

Hexacelsian consists of a multilayer version of the 2D-bilayer aluminosilicates previously 

mentioned. Each layer in this structure is anionic, and different layers are separated by cationic 

species. A delamination protocol to obtain single/few-layer materials on flat supports is discussed 

in section 5.3.3. It is important to note that the bilayer aluminosilicate structure is also a model 

system for the most widely used catalyst in the industry, namely zeolites.71 

Due to low coefficient of thermal expansion, high melting point, and low dielectric constant of 

mineral aluminosilicates,72 these analogous thin nonporous materials may be useful for a variety 
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of applications. Some include traps for atoms or molecules, chemical catalysts, coatings to change 

surface properties, coatings to protect a surface from corrosion, chemical degradation, material 

loss, or dendrite formation, and microporous membranes. Scientists have previously used a 

bottom-up approach to synthesize single-layer nanoporous silica 73 on a metallic surface and shown 

that they can be used for some of these applications. However, the currently used synthetic method 

is very time consuming, prohibitively expensive, and produce minimal amounts of material. Part 

of the work carried out during this thesis has contributed to developing ways to obtain scalable 

materials for some of the applications mentioned above. 

5.2 Experimental Methods 

An ultrathin (0.5 nm) aluminosilicate film with a well-defined nano-porous structure grown on 

Ru(0001) was exposed to different noble gases (Helium, Argon and Xenon) at elevated pressures 

in an ultrahigh vacuum (UHV) apparatus. The UHV system here used was an Ambient Pressure 

X-ray Photoelectron Spectroscopy (AP-XPS) apparatus at beamline X1A1 of the National 

Synchrotron Light Source (NSLS I), at Brookhaven National Laboratory (BNL), New York, USA. 

Allowing high pressure in the analysis chamber, up to ~1 Torr, this system utilizes differential 

pumping to protect the Specs Phoibos 150 NAP hemispherical analyzer equipped with a CEM 9 

channeltron detector and a 300 μm entrance aperture to the first of three differential pumping 

stages. The sample was positioned at a small distance of ~300 μm from the aperture to minimize 

scattering of the emitted photoelectrons by the ambient gas and also to ensure that the local 

pressure at the surface was not significantly affected by the differential pumping through the 

aperture. The analyzer was offset by 70° from the incident X-ray beam and 20° from the surface 

normal of the sample. The aluminosilicate film was prepared on a Ru(0001) substrate with a 

composition Al0.2Si0.8O2, following the preparation method described in ref.[73]. Briefly, this 
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includes deposition of 0.8 ML of Si and 0.2 ML of Al on clean Ru(0001) in an O2 background 

pressure of 2 × 10−7 Torr, followed by annealing for 10 minutes to 930 °C at an O2 pressure of 

3 × 10−7 Torr, which results in the formation of a crystalline structure. The crystal was mounted 

on a ceramic button heater to allow the sample to be heated at elevated oxygen pressures using an 

external voltage supply. The temperature was measured by a type-K thermocouple in contact with 

the sample. 

5.3 Results and Discussion 

5.3.1 Trapping of Noble Gases by an Ultrathin Nano-Porous Aluminosilicate 

Film on Ru(0001) 

While it is common to find Argon buried on a surface after Ar+ sputtering of a Ru(0001) sample, 

the sole exposure of a perfectly clean Ru(0001) sample to gaseous Argon at temperatures higher 

than 40 K will not retain this gas. In our experiments, however, when the bilayer aluminosilicate 

framework is present on Ru(0001), room-temperature exposure to elevated pressures (1 mbar) of 

Ar resulted in it being trapped. The black XPS Ar 2p core-level spectrum in Figure 5.3 (a) was the 

first demonstration of the trapping of Ar by exposure to the gas at 300 K. These experiments were 

carried out during the last month of operation of NSLS, which was closed in 2014. I was lucky to 

be part of this historical event and even got to use the last available photons for these experiments. 

A commemorative t-shirt I was given is shown in the figure below. 
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Figure 5.2: Shutdown of the National Synchrotron Light Source, commemorative t-shirt. 

 

These experiments were repeated using the new synchrotron at BNL (NSLS-II), which started 

operations soon after the closure of NSLS, to obtain higher quality and more detailed data.74,75 

 

 
Figure 5.3: (a) Ar 2p spectra as a function of temperature after exposure of an aluminosilicate film on Ru(0001) to 1 

mbar of Ar. (b) Plot of the relative amount of Argon versus temperature. 

 

While the presence of Ar was confirmed by XPS, it remained to be determined if the Ar atoms 

were trapped within the hexagonal prism nanocages that compose the aluminosilicate framework 
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or at the interface with the Ru(0001) support. The possible trapping locations are shown in Figure 

5.4. 

 

 

Figure 5.4: Argon is trapped by Al0.2Si0.8O2/Ru(0001) when exposing the structure to 1 mbar of the gas at 300 K. Ar 

atoms can be trapped at the interface between Ru(0001) and the aluminosilicate framework and/or within the 

hexagonal prism nano-cages that compose the aluminosilicate structure.  

 

Temperature dependence of the AP-XPS spectra is shown in Figure 5.3 (a). The normalized 

amount of Argon trapped as a function temperature can be obtained from the relative areas of the 

AP-XPS Ar 2p peaks (plot shown in Figure 5.3 (b)). This plot shows that some Argon remains on 

the surface even after heating to 490 K and only completely desorbs after annealing to 1100 K.  
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Figure 5.5: Xe 4d core level XPS spectrum after exposure to 1.5 Torr Xe at 300 K (red), partial desorption after 520 

K annealing is observed (green).  

 

In order to compare the behavior of Ar with other noble gases, experiments were also carried out 

using He and Xe. Helium, much lighter than Ar, does not remain on the surface upon exposure to 

elevated pressures. Xenon, on the other hand, does remain on the surface, but the trapped amount 

seems lower than for Ar. The red spectrum in Figure 5.5 shows a Xe 4d core level spectrum after 

exposure of the aluminosilicate bilayer to 1.5 Torr Xe at 300 K followed by evacuation, 

demonstrating the trapping of the gas. The green spectrum corresponds to the same sample after 

annealing to 520 K, which results in partial desorption of the trapped Xe. The spectra were acquired 

at the X1A1 beamline of NSLS, using a photon energy of 675 eV. 

This experiment opened new investigation avenues for the trapping of noble gases and the 

understanding of confinement effects. Additionally, different applications of these and related 

materials have stemmed from this research, and a provisional patent application related to this 

work has been filed (Boscoboinik et al., - Provisional S.N. 62/946,688 - Filed December 11, 2019 

- Application Entitled "Oxide Polygonal Prism Nanocages for Trapping of Gases"). More recently, 

Brookhaven National Laboratory and Forge Nano Inc., were granted an award by the DOE 

Technology Commercialization Fund to develop and scale up this technology for nuclear energy 

applications (https://mailchi.mp/4345fd533a86/doe-ott-latest). 

https://mailchi.mp/4345fd533a86/doe-ott-latest
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5.3.2 Hexacelsian Synthesis 

Bilayer aluminosilicate structures were successfully prepared in the past, as described in previous 

sections. However, the bottom-up approach used for the synthesis of these 2D materials is 

prohibitively expensive for scaling up production.73 Therefore, there is an increasing need for 

developing alternate synthesis protocols with lower costs.  

 

 

Figure 5.6: Hexacelsian structure, (a) top view and (b) side view of the layered material intercalated by barium atoms 

(green). Red spheres represent oxygen atoms and yellow/grey are either sodium or aluminum in the aluminosilicate 

bilayer. (Vesta software)  

 

The synthesis of a bulk layered material called hexacelsian, whose delamination can result in an 

inexpensive way of obtaining bilayer aluminosilicates, is discussed in this section. A 

representation of the hexacelsian structure consisting of a multilayer 2D-aluminosilicate, where 

each layer is separated by barium ions, is shown in Figure 5.6.  

The synthesis consists of an ion exchange process in which Sodium in Na-LTA zeolite is 

exchanged by barium ions from a saturated solution of 𝐵𝑎(𝑁𝑂3)2 to produce Ba-LTA. The 

process involves incorporation and continuous mixing of Sigma Aldrich Na-LTA (1 gram for the 
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experiments here performed) in 20 mL of barium nitrate solution for 12 hours at 70 oC After 

filtering and washing with deionized water the product, a drying period of 12 hours at 80 oC was 

performed. Following, a calcination process of 30 hours at 900 oC leads to formation of the 

hexacelsian phase. The chemical equation for the ion exchange and process diagram are shown in 

Figure 5.7. 

 

 

Figure 5.7: Hexacelsian synthesis protocol (a) Ion exchange reaction (b) diagram of the ion exchange protocol and 

(c) calcination procedure. 

 

The characterization of the obtained hexacelsian phase was performed in the context of a 

collaboration with Universidad de San Luis, Argentina, and Brookhaven National Laboratory in 

partnership with Dr. Celeste Bernini and Dr. Andres Alberto García Blanco. X-ray powder 

diffraction (XRD) patterns were obtained for the samples prepared following the previously 

described protocol. The diffraction patterns obtained reproduce previously reported hexacelsian 
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diffractograms, as shown in Figure 5.8. Insets with H and * labels correspond to hexacelsian 

diffraction peaks in the literature.76,77 There are some unidentified peaks, which could be related 

to the presence of impurities. For the case of the spectra associated with the product of the synthesis 

here described, some of these unassigned peaks are absent thus potentially reflecting absence of 

concomitant structures.  

 

 

Figure 5.8: X-ray powder diffractogram of obtained hexacelsian (blue) and comparison with literature (black76 and 

brown77 insets). Green lines serve as a guide to the eye for the hexacelsian signals (labeled as H in top inset and * in 

bottom inset). 

 

5.3.3 Hexacelsian Delamination and Characterization 

The hexacelsian layered material, the product of the protocol described in section 5.3.2, was further 

subject to a delamination process. This consists of performing a 15 min ultrasonic bath treatment 
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of the powder sample suspended in a water-based solvent. After sonication, the delaminated 

sample was filtered. The samples utilized in this work have been subject to only one delamination 

cycle. However, the process can be repeated as many times as desired after the redispersion of the 

solid sample in the solvent as represented in Figure 5.9. 

 

 

 
Figure 5.9: Diagram of delamination protocol where the solvent is deionized water.  

 

Fourier-transform infrared spectroscopy (FTIR) spectra before and after the delamination process 

were obtained and show an increase in definition of the characteristic silica film band 78 centered 

at 1225 cm-1 for all solvents used during delamination protocol (See Figure 5.10). Furthermore, 

William H. Hoffmann at BNL obtained XRD patterns and XPS spectra for the delaminated 

materials in agreement with the results discussed here. AFM images of the delamination product 
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showed proof of delamination efficiency up to single-layer thickness. In these AFM results, partial 

delamination with a thickness between 3.5 nm and 4.5 nm has been reported, indicating 7-9 

bilayer-thick flakes (this unpublished data part of internal BNL reports and therefore not shown 

here).  

 

 

 
Figure 5.10: FTIR spectra of hexacelsian (Ba-LTA calcined at 900oC) and exfoliated products under the presence of 

three different solvents. 

 

No other delaminated ionic nanoporous ultrathin layered silicates have been obtained before from 

ionic layered materials, with a number of layers between 1 and 20. The cages that form this 

material can trap gases, resulting in many useful applications.74,79  
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5.4 Conclusions 

In summary, proof-of-principle experiments have been carried out to demonstrate that 2D silicates 

on metallic supports are suitable materials for trapping individual noble gas atoms at non-

cryogenic temperatures and could provide a platform for studying mechanochemical reactions.75 

Indeed, experiments, not shown here, but published in collaboration with others, have shown that 

the interfacial confinement could enable new chemistry.74 While of great fundamental importance, 

the materials used for noble gas trapping are not scalable for practical applications. Considering 

this, an experimental top-down approach protocol for the synthesis of a layered precursor of the 

2D-silicates has been presented. First, steps toward delamination were explored, aiming at 

producing single to few-layer materials. These were characterized using surface science methods. 

The synthesis protocol here described have the potential to scale the production and reduce the 

costs considerably of these 2D materials. 

This work has opened new avenues of research and potential applications of these materials, 

including a patent, and a potential pathway for commercialization of these materials for some noble 

gas trapping applications in nuclear reactors. 

  



www.manaraa.com

 

73 

 

Appendix 1: Surface Structural Changes of Furfural on 

Pd(111) by Means of IRRAS 

A1.1 Introduction 

In order to produce value-added products from lignocellulosic biomass, the raw material 

(cellulose, hemicellulose) is typically hydrolyzed to the corresponding carbohydrate monomers, 

glucose, fructose, and xylose, using acid catalysis.80–83 Subsequent acidic dehydration leads to the 

formation of smaller oxygenates such as furfural (FF), 5-hydroxymethylfurfural (HMF), and 

levulinic acid (LA). These products can be used to produce fuels and polymers or for synthesizing 

other monomers relevant to the polymer industry.81,83–88 However, many of the current methods 

for transforming such feedstocks are often dirty and energy-consuming;80–82,86–88 for example, FF 

is upgraded using a toxic copper chromite catalyst,89,90 at high pressures.  

It would thus be advantageous to develop a catalyst for converting furfural to more valuable 

feedstocks 87,91 and palladium has been identified as a selective catalyst for the hydrogenation of 

furfural to methyl furan and dimethylfuran.86,92–95 This has prompted investigations of the 

chemistry of furfural on Pd(111) single crystal model catalysts.96 In particular, it has been proposed 

experimentally 97,98 and theoretically 97 that the adsorbate coverage controls the selectivity, with 

flat-lying species leading to decarboxylation and the formation of furan and tetrahydrofuran, while 

tilted conformations result in furfural hydrogenation to furfural alcohol or 2-methyl furan. 

However, there have been no infrared spectroscopic investigations of the adsorption of furfural on 

Pd(111) that would provide direct experimental verification of the orientation of the adsorbates 

from the surface infrared selection rules.99 This is addressed in the following by investigating the 

surface adsorption and structural changes of furfural on a Pd(111) single crystal in ultrahigh 



www.manaraa.com

 

74 

 

vacuum (UHV) by using Infrared reflection-absorption spectroscopy (IRRAS) as a function of 

coverage and temperature. 

Temperature-programmed desorption (TPD) experiments of furfural on Pd(111) 96 show molecular 

desorption in a broad state centered at ~355 K extending between ~300 and 450 K. The formation 

of furan is found at 295 K, where pre-adsorbed deuterium shows the incorporation of two 

deuterium atoms in the product and some propylene is formed in a broad peak at ~370 K, assigned 

to a furan ring-opening reaction. 

Detailed density functional theory (DFT) calculations reveal different structural orientations of 

furfural on Pd(111).100 At lower coverages, the most stable conformation is with the furan ring 

lying flat on the surface, centered over a hollow site, while more weakly bound tilted species form 

at higher coverages, in accord with previous work.96,101,102 More weakly adsorbed species, namely 

a bent configuration with a furan ring tilted away from the surface and an upright structure, may 

be stabilized at higher coverages.103 

A1.2 Experimental Methods 

Infrared reflection absorption spectra were collected using a Bruker Equinox spectrometer 

equipped with a liquid-nitrogen cooled mercury cadmium telluride (MCT) detector. The light path 

is enclosed in plexiglass boxes and continuously purged with dry, CO2-free air. The infrared cell 

consists of a six-way 2 3/4” cube coated with gold to minimize inner wall adsorption of 

contaminants, with two infrared-transparent KBr windows along the IR beam path. A palladium 

(111) single crystal was mounted in a coaxial, differentially pumped manipulator which could be 

resistively heated to 1200 K or cooled to 80 K using liquid nitrogen. The transfer arm allows 360o 

rotation and displacement of the sample back and forth between the IR cell and a 12-inch-diameter 

bell jar main chamber (Prep. chamber in Figure A1.1).  
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Figure A1.1: Experimental setup utilized for infrared reflection absorption spectroscopy studies of furfural on 

Pd(111). 

 

The main chamber is pumped by a combination of rotary, turbomolecular and an ion pumps and 

serves as a sample preparation chamber and is equipped with an ionization gauge for measuring 

the background pressure, an ion gun for sample cleaning, leak valves for introducing gases for 

sample preparation and dosing, and a double-pass cylindrical mirror analyzer (CMA) for sample 

characterization by Auger spectroscopy. Cleaning of the sample is performed following a protocol 

of Argon bombardment, annealing and heating in oxygen at varying temperatures and a 

background oxygen concentration as summarized in Figure A1.2. Furfural (Aldrich, > 99.9% 

purity) was transferred to glass bottles and attached to the gas-handling systems of the vacuum 

chamber and further purified by several freeze-pump-thaw cycles. 
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Figure A1.2: Diagram of the cleaning protocol for Pd(111), consisting of three sequential steps, argon bombardment, 

annealing and oxygen roasting. Photograph of the sample while annealing is shown as background. 

 

A1.3 Results and Discussion 

A1.3.1 Furfural Uptake 

The surface chemistry of furfural adsorbed directly on clean Pd(111) was studied by initially 

adsorbing it on clean Pd(111) at ~90 K. The spectral changes during adsorption are displayed in 

Figure A1.3, where the relative coverage for each dose is indicated and how the coverages were 

obtained is described below. The spectra show two distinct regimes. The first is for furfural 

adsorbed at the lowest dose (indicated as a furfural coverage of 0 ML), which shows no intensity 

in the carbonyl stretching region at ~1707/1677 cm-1, indicating that the C=O bind lies parallel to 

the surface and is not detected due to the surface infrared selection rules.104 This has an associated 

weak peak at ~1610 cm-1, presumably a shifted carbonyl stretching mode weakened by interaction 

with the surface. The associated aldehyde C‒H mode at ~1367 cm-1 is still evident, indicating that 
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this vibration has a component perpendicular to the surface, and the presence of peaks at 1571 and 

1465 cm-1 suggest that the furan ring is not perfectly parallel to the Pd(111) surface in this close-

to flat-lying species. 

 

 

Figure A1.3: Infrared spectra of low coverages of furfural adsorbed on Pd(111) at ~90 K as a function of furfural 

coverage, where the coverages are indicated in the figure. 

 

Higher furfural exposures produce a drastic change in the infrared spectra and cause the carbonyl 

modes to appear suggesting that the furfural adopts a more tilted geometry at higher exposures. 

The vibrational frequencies are close to those found for the furfural multilayer (Figure A1.6, Table 

A1.1), indicating that furfural adsorbs molecularly on Pd(111) at low temperatures. These 

vibrational frequencies are in accord with the group frequencies expected for 2-substituted furans, 

which are characterized by peaks at 1605 to 1570 cm-1 (1571 cm-1 in furfural), 1510 to 1475 cm-1 

(1465 cm-1 in furfural) and from 1400 to 1380 cm-1 (1395 cm-1 in furfural).105–107 In particular, the 

carbonyl stretching modes are close to those found in the multilayer (Fig. A1.6), implying that the 

aldehyde group is not shifted by interaction with the palladium surface,108,109 indicating that the 

carbonyl groups are remote from the surface. 
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Figure A1.4: Uptake for furfural on Pd(111) at low temperatures from the variation in the integrated intensity of the 

carbonyl stretching modes as a function of exposure. 

 

Adsorption into the high-coverage regime is characterized in Figure A1.4, where the presence of 

a tilted furfural adsorption state is gauged from the variation in the intensity of the carbonyl 

stretching modes as a function of exposure, and the results are used to calibrate the coverages 

shown in Figure A1.3. Note that, since the flat-lying species exhibit negligible carbonyl stretching 

intensity, uptake into this state is not included in Figure A1.3. The spectra for the tilted species 

show modes at 1702 and 1677 cm-1 indicating the presence of both the cis and trans conformers of 

furfural following adsorption at ~90 K.110–112 Measuring the ratios of the intensities of the 1702 

and 1677 cm-1 modes as a function of exposure reveals that they are independent of the furfural 

coverage and using the absorbance values for these modes 112 indicates that ~40% of the furfural 

exists as the cis conformer and ~60% as the trans conformer. 
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Figure A1.5: Plot of furfural tilt angle with respect to the surface as a function of the relative coverage of furfural 

adsorbed on Pd(111) at ~90 K. 

 

The variation in tilt angle with coverage is calculated from the variation in the intensity of an A’ 

(at 1465 cm-1, Table A1.1) and A” (784 cm-1, Table A1.1) modes as a function of coverage, by 

calibrating the intensities using the absorbance values in the literature.112 The results are displayed 

in Figure A1.5, which shows that the furfural tilt angle varies from ~35º with respect to the surface 

at a relative coverage of ~0.4 ML to ~41º as the coverage approaches saturation. Vlachos and co-

workers have identified two types of tilted species on Pd(111) by DFT,97 a so-called Tilted-1 

species in which the furfural adsorbs via the CHO group to the Pd(111) surface and a Tilted-2 

species, which adsorbs via the furan ring. Both have a molecular tilt angle of ~35º with the surface, 

in the range of the values measured experimentally (Figure A1.5). Since the spectra of furfural on 

Pd(111) at ~90 K show no significant shift in the carbonyl stretching modes, this suggests that it 

adsorbs in the Tilted-2 configuration. 
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A1.3.2 High Dose Experiments -Formation of Thick Multilayers 

Upon extended exposure of Pd(111) to furfural, multilayer adsorption was observed. Experiments 

were performed on sample formed by producing a thick furfural multilayer on the crystal at low 

temperature. The temperature dependence of molecular structural changes is studied by flash 

annealing the sample to a target temperature and then always allowing it to cool down to ~84 K to 

proceed to record infrared spectra of the sample. The infrared spectrum of multilayers of furfural 

adsorbed on Pd(111) and heated to various temperatures is displayed in Figure A1.6 with the 

vibrational frequencies displayed adjacent to each peak.  

 

Table A1.1: Assignment of the infrared spectrum of furfural multilayers and monolayers on Pd(111). 

 

The peaks are assigned by comparison with the gas-phase spectrum for furfural 110,112 and are 

summarized in Table A1.1 and are in excellent agreement with the gas-phase spectrum, indicating 

the presence of pure furfural molecular adsorption on the surface. Furfural belongs to the Cs point 

Gas-phase Furfural 

Frequencies/cm-1 

Furfural Multilayer on 

Pd(111)/cm-1 

  

Cis Trans Cis Trans 
Furfural Monolayer 

on Pd(111)/cm-1 
Symmetry 

3124 3134 3110 3137 - A’ 

2813 2855 2813 2856 - A’ 

1692 1675 1703 1677 1702, 1677 A’ 

1565 1569 1567 1571 1571 A’ 

1474 1465 1475 1465 1465 A’ 

1394 1394 1394 1394 1394 A’ 

1367 1367 1367 1367 1367 A’ 

 1278 1246 1279 1251 1279, 1251 A’ 

1222 1208 1230 1207 1207, 1230 A’ 

1157 1149 1153 1153 1153 A’ 

1077 1083 1084 1085 1084 A’ 

1021 1015 1021 1021 1040, 1021 A’ 

930 946 929 947 947, 929 A’ 

883 883 884 884 884 A’ 

842 842 842 842 - A” 

768 768 789 789 798, 784 A” 

755 747 755 755 755 A’ 
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group and the symmetry assignments of the vibrational modes are included in Table A1.1. This 

indicates that the majority of the normal modes are of A’ symmetry, with only the 842 and 799 

cm-1 modes having A” symmetry and are due to out-of-plane ring modes and are highlighted in 

bold in Figure A1.6. The peaks at 3136 and 2856 cm-1 are due to C‒H stretching modes where the 

2856 cm-1 mode is the aldehyde C‒H stretch. The peak at ~1367 cm-1 is the C‒H rocking mode of 

the aldehyde group. Furfural can exist in two conformers depending on whether the aldehyde 

carbonyl group is adjacent to (cis) or distal from (trans) the furan ring oxygen. This is manifest by 

shifts in the frequencies of some vibrational modes, in particular of the carbonyl stretching modes, 

where the 1677 cm-1 mode is due to the trans conformer, while the 1703 cm-1 peak is assigned to 

the cis structure. Other features that show similar cis-trans splits are the 1279/1251, 1230/1207 

and 929/947 cm-1 doublets due to C‒H in-plane bending vibrations, where the first wavenumber 

is pertinent to the cis conformer and the latter to the trans. 

The presence of modes with both A’ and A” symmetry indicates that the furfural in the multilayer 

is randomly oriented on the surface. The multilayer infrared spectrum remains essentially 

unchanged as the sample is heated to ~125 K, but the relative intensity of the ~789 cm-1 peak 

decreases as the sample is heated to ~150 K indicating that annealing the furfural overlayer causes 

the furan ring plane to increase its tilt angle with respect to the surface, and is accompanied by an 

increase in the ~1700 cm-1 peaks intensity suggesting that the carbonyl (C=O) group more 

perpendicular to the surface. 
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Figure A1.6: Infrared spectra of a furfural multilayer adsorbed on Pd(111) at 84 K and annealed to various 

temperatures where the annealing temperatures are indicated adjacent o the corresponding spectrum.  

 

Further annealing to 175 K shows the appearance of a very intense peak located at 790 cm-1 (See 

Figure A1.7). Since this is an out-of-plane vibrational mode, its appearance is interpreted as being 

due to a concerted reordering of the overlayer structure to produce an almost completely flat 

molecular orientation within a crystalline phase on Pd(111). The appearance of this peak is 

accompanied by the presence of signals due to the cis conformer of furfural as part of the signature 

of this highly-ordered structure. Significant sharpening of the broad C‒H stretching vibrations at 

2813 and 3110 cm-1 are also indicative of promotion of cis over trans isomers, as shown by the 

assignments listed in table A1.1.  

 

 
 



www.manaraa.com

 

83 

 

 
Figure A1.7: Multilayer spectra of furfural adsorbed at 80 K on Pd(111) and then annealed to higher temperatures 

showing mostly a peak due to flat-lying furfural at 790 cm-1 on heating above 175 K. The spectrum also shows peaks 

that are signatures of the cis conformer of furfural. 

 

To further investigate this phenomenon, a clean Pd(111) sample was exposed to 10L of furfural at 

170 K and, as described in previous experiments, cooled to 80 K to collect the IR spectra (See 

Figure A1.8), sequentially flash heated to higher temperatures (values given in legends), and all 

IR spectra were obtained after cooling to 80 K. At 170 K, between the transition temperatures 

previously described (150 K – 175 K in Figure A1.7), a sharpening and increase in relative 

intensity of the 790 cm-1 out-of-plane CH mode is indicative of a structure with a smaller tilt angle 

of the furfural molecular plane with respect to the surface. The signals corresponding to the high-

frequency cis conformer and combined cis/trans ring modes are still observed for which the 

presence of a tilted geometry is still evidenced. Annealing to 180 K produces a spectrum with a 

very intense, sharp out-of-plane 790 cm-1 mode, the infrared spectra of this species has not hitherto 

been reported in the literature. 
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Figure A1.8: Infrared spectra after a 10 L FF exposure on Pd(111) at 170 K to capture the transition from the tilted 

into a more flat-lying configuration of this phase that contains predominantly cis-furfural. Spectra were always 

collected at 84 K after flash annealing to a target temperature (specified in the legend) and by allowing the sample to 

cool to 84 K to collect the spectrum. 

 

   

Figure A1.9: Close up of 180 K for signal labeling and close caption of the chemistry occurring at more elevated 

temperatures. 

 

A more detailed view of the spectra collected after annealing to 180 K and higher temperatures is 

shown in Figure A1.9, where the frequencies have been labeled for the peaks of this crystalline 
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phase. The formation of a crystalline structure by annealing to ~180 K is a result of the molecules 

achieving enough energy to be able to transition into a more stable phase, possibly stabilized by a 

hydrogen-bonding network as reported in the work of Seidel et. al. 113 who studied the 

crystallization of furfural by cycles of heating from 100 K (in a cold nitrogen gas stream) to 5 K 

below the melting point (~237.17 K) and further recrystallizing at 100K. The furfural was 

contained inside an open diameter capillary (1 cm long by 0.5 mm diameter) to measure the X-ray 

diffraction patterns. A diffractogram obtained at 100 K was indicative of the formation of a single-

crystal of furfural and the analysis of the diffraction pattern produced a crystal structure displayed 

in Figure A1.10. The crystal is comprised of weak hydrogen-bonded networks of only the cis 

conformer 113 and is consistent with the conformational changes observed in the infrared data here 

reported, corresponding to the IR collected at 84 K after flash annealing to 180 K, highly crystalline 

structure of the IR spectra shown in Figure A1.9. 

 

  

Figure A1.10: Structure obtained from coordinates given in literature113 for single crystal furfural. (Vesta Software) 

 

As the sample is annealed to much higher temperatures, there is evidence of thermal decomposition 

of furfural on Pd(111) that will be discussed in greater detail elsewhere. High-frequency modes 

from the aldehyde (2800-2850 cm-1) and CH3 (3000-3200 cm-1) groups become narrower during 

this transition (on heating from 170 to 180 K), as shown in Figure A1.11. The sharpening of these 
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peaks in the lower 2813 and 3110 cm-1 wavenumbers is also indicative cis conformer being 

promoted from our assignments listed in Table A1.1. Further annealing causes those signals to 

disappear, due to decarbonylation, furan production and ring-opening processes which will be 

analyzed in detail elsewhere.  

 

 

Figure A1.11: Detailed view of the high-frequency region of the spectra for furfural on Pd(111) where the annealing 

temperatures are indicated on the figure. Broad features sharpen in the region of cis conformer signals at 3110 and 

2813 cm-1 at 180 K. 

 

 

 

 

 

A1.3.3 Experiments on Intermediate Furfural Doses – Formation of Thin 

Multilayers 

The spectral changes found during adsorption at 80 K were displayed in Figure A1.3. The final 

dose (with a 1 L exposure) in Fig. A1.3, here indicated as an intermediate dose, is used to study 

the temperature evolution of the infrared spectra by annealing briefly to a particular temperature, 

and then allowing the sample to cool at ~90 K, at which temperature the infrared spectra were 
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collected. The results are displayed in Figure A1.12, where the annealing temperatures are 

indicated. 

 

 

Figure A1.12: Infrared spectra of furfural (using a 1 L exposure from Fig. A1.3) adsorbed on Pd(111) at ~90 K as a 

function of annealing temperature, where the annealing temperatures are indicated on the figure. 

 

The general behavior of the surface-chemistry of furfural on Pd(111) is evident from the data 

shown in Fig. A1.12, and shows that furfural is tilted with respect to the surface following 

adsorption at ~90 K, with the aldehyde group remote from the surface (the Tilted 2 species of 

Vlachos).97 When annealing, the tilt angle of the upright species increases up to a temperature of 

150 K, similar to the molecular reorientation observed in the case of the thick multilayer (A1.6). 

Further annealing produces a decrease in intensity of the in-plane ring signals, which translates 

into a decrease of tilt angle, as well as a small amount of desorption. This restructuring is 

summarized in the infrared spectra displayed in Figure A1.13, where the overlaid infrared spectra 

collected at three key temperatures, 90, 150 and 165 K (as green, blue and red shaded curves 
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respectively) show how signals of the cis conformation increase with increasing temperature, while 

the opposite trend is observed for the case of the trans conformation.  

 

 

Figure A1.13: Infrared spectra collected at three key temperatures, adapted from Fig. A1.11, which are overlapped to 

illustrate the trans to cis transition after annealing. 

 

A1.4 Conclusions 

Molecular furfural undergoes several structural and conformational transformations on Pd(111) 

depending on the temperature and surface coverage, or whether it is present as a molecular 

overlayer or a condensed multilayer. The carbonyl stretching modes for the tilted form of furfural 

on Pd(111) at low temperature are close to those found for a condensed layer of furfural (Fig. 

A1.6), indicating that the aldehyde group of the tilted form of furfural is remote from the surface 

upon adsorption. Heating the overlayer formed at ~90 K initially causes it to become more 

perpendicular to the surface (Figures A1.5 and A1.6). These conformational changes suggest that 

furfural crystallizes into a phase favoring the cis conformer (Figures A1.7 and A1.8) but further 

heating to higher temperatures (to ~180 K) causes the infrared signal of the tilted form of furfural 
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to decrease significantly in intensity, presumably due to the relief of compression caused by 

furfural desorption. This produces flat-lying furfural as evidenced by the appearance of the intense 

out of plane mode observed at 790 cm-1 and a ~1610 cm-1 peak (Fig. A1.9), identical to those 

initially found at low furfural coverages during the uptake of furfural on Pd(111) at 90 K (Fig. 

A1.3). The flat-lying species react to eventually form carbon monoxide as evidenced by the intense 

peaks around 1800 cm-1 (Fig. A1.8).114 This confirms that the flat-lying form of furfural provides 

the precursor to the decarbonylation of furfural to yield furan, propylene and carbon monoxide 

96,97 that is proposed to control the overall catalytic selectivity.97 This can be tuned by artificially 

varying the furfural tilt angle by using a strongly bound coadsorbate.115–118 However the relation 

between the structural changes in the study of the chemistry is beyond the scope of this work and 

will discussed detail somewhere else. 

Finally, these surface science infrared spectroscopy results provide novel evidence of phase 

transitions involving important restructuring of furfural and suggest that Pd(111) is sufficiently 

reactive that could be an alternative used to study the catalytic conversion of furfural to more 

valuable feedstocks.  
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Appendix 2: Monte Carlo Simulations of Self-Assembled 

Organometallic One-dimensional Wires 

A2.1 Introduction 

Understanding how single molecules self-organize into conductive architectures at the sub-

nanometer scale is crucial for the development of new technologies using the long-overdue 

“bottom-up” approach for molecular electronics. Within the next few years, limitations of the size 

of objects that can be manipulated (or etched) in a reliable and industrially viable manner, for the 

fabrication of integrated electronic circuits, will be reached and completely new ways of 

approaching their fabrication will be required.119 This was anticipated by Feynman’s famous 

lecture “There is Plenty of Room at the Bottom”,120 when he proposed the idea of constructing 

electronic circuits by assembling collections of atoms to form functional structures; a so-called 

“bottom-up”, rather than the traditional “top-down”, approach. This notion became more concrete 

with Aviram and Ratner’s suggestions for possible molecular architectures that were proposed to 

act as diodes.121 Subsequently, a large amount of work has been carried out to measure the electron-

transport properties of individual molecules, for example using break junctions or scanning-probe 

microscopy tips,122,123 providing a better understanding of the charge-transport behavior at the 

single molecule level.  

Naturally, the next step is the fabrication of such nanoarchitectures. Strategies involving self-

assembled monolayers have shown very promising results, such as in the case of Self-Assembled 

Monolayer Field-Effect Transistors (SAMFETs).124 However, the more spatially efficient 

controlled formation of conductive nanoarchitectures within a single monolayer is a much more 

challenging problem. While scanning probe techniques such as scanning tunneling microscopy 
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(STM) have shown elegantly how the manipulation of individual atoms and molecules is in 

principle possible, these methods are mostly of academic interest,125,126 and their translation into 

industrially relevant processes for mass production of nanoelectronic devices is questionable and 

unlikely to be capable of efficiently assembling the large number of devices required to fabricate 

realistic circuits.  

An alternative method is explored here, inspired mostly by complex nanoarchitectures found in 

nature. This consists of creating devices at the nanoscale by allowing the building blocks to self-

organize into the desired structures by tuning the environmental conditions 127 on an already pre-

patterned substrate. Establishing how such a targeted self-assembly can be achieved to form a 

specific, desired structure is not trivial and requires a detailed understanding of the self-assembly 

process and, in turn, of the interactions between all the species involved. The nature of these 

interactions has been explored in innumerable studies of the self-assembly and self-organization 

processes.128–130 

In terms of conductive self-assembled structures, it has been shown that bifunctional molecules 

with ligands that bind strongly to gold, such as isocyanides and thiols, can spontaneously 

oligomerize on gold surfaces 131 and are also capable of forming conductive bridges between gold 

nanoelectrodes on an insulating mica substrate.132 The structure of organometallic wires made 

from 1,4-phenylenediisocyanide (PDI) and Au adatoms consisting of (-Au-PDI-)n chains was 

previously imaged by STM down to the atomic scale, where it could be seen that the distance 

between individual monomeric (Au-PDI-) units is 1.1 nm.131,133 This type of self-assembly 

chemistry offers the possibility of interconnecting between gold nanoelectrodes. Furthermore, 

based on an analysis of the self-assembly mechanism,134 it was suggested that dipolar analogs of 
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these molecules could be aligned by the imposition of an external electric field between 

nanoelectrodes.  

An interesting twist in the approach proposed here to the self-assembly of circuits is to make use 

of current top-down nanofabrication techniques, which allow the preparation of features with sizes 

in the order of 10 nm, to produce judiciously tuned nanoelectrodes. These will act as guiding and 

anchoring points for the directed self-organization of interconnections between them, leading to 

fabricating devices with complex electronic and structural functions. 

Based on the linear self-assembly mechanism discussed above, a simplified model was explored 

using Monte Carlo simulations and the lattice-gas model in order to examine the outcome 

structures as a function of various parameters that influence the evolution of the nanoarchitecture. 

These parameters are, (a) the interaction energy “w” between the entities involved in the process, 

(b) the coverage θ of monomeric units, i.e.: the “building blocks”, (c) distance “m” between 

nucleation sites, (d) temperature and (e) time elapsed from the deposition of the precursor 

molecules on the surface. Understanding the influence of these parameters in the resulting structure 

will aid the future design of nano-architectures produced by directed self-assembly. Note that we 

have chosen to use the stochastic approach provided by Monte Carlo simulations to address the 

self-assembly, to mimic the way nature carries out this process.  

While the original approach was useful and provided very valuable insights into the self-assembly, 

increasing the complexity of the systems to mimic more realistic ones resulted in prohibitely 

expensive computational times. In this appendix, improvements to the way the calculations are 

performed are described. These improvements include: (1) parallel runs of individual conditions 

and averaging of the resulting outputs, (2) adaptation to run on computer clusters and specifically 

on the Open Science Grid platform (OSG),135,136 which is supported by the National Science 



www.manaraa.com

 

93 

 

Foundation award 1148698, and the U.S. Department of Energy's Office of Science, (3) generation 

of periodic backups at checkpointing for resubmission in the case a calculation is unexpectedly 

interrupted, (4) proposing automation of protocols by using adequate scripts and Directed Acyclic 

Graph manager (DAGman).137 This will ultimately serve to decrease the computational limitation 

of the original calculations, enabling expansion of our model to more complicated (realistic) 

systems and potentially add a third dimension to simulate 3D systems such as solids, liquids, gases 

and interfaces.  

In the following sections more realistic scenarios by adding system parameters not originally 

considered will be discussed, including: (1) nearest neighbor diffusion, (2) introduction of 

monomers as a function of computational time (variable dosing conditions), (3) improved 

percolation analysis, (4) chain-length distribution statistics, (5) controlled distribution and size of 

ideal nanoparticle arrays, (6) input of architectures from images of real systems. All these 

modifications contribute to providing a more realistic picture of the experimental systems. This is 

particularly useful for the experimental case in which a top-down approach is first used to 

synthesize an array of nanoparticles and a bottom-up approach is later used to link the 

nanoparticles. This improved simulation scheme was used to study self-assembly strategies for 

designing molecular electronic circuits.138 The application of the new simulation scheme was an 

important collaboration project which was part of the graduate research work by Dr. Dustin Olson. 

In that work, Dr. Olson considered different types of adsorbed species in the model and run the 

calculations, generating output statistics that allowed important conclusions on the mechanism and 

growth kinetics. These simulation results were in good agreement with experimental data from 

actual devices we designed and built using state of the art in top-down nanolithography JEOL 

JBX6300 electron beam writer at the Center for Functional Nanomaterials (CFN), Brookhaven 
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National Laboratory under proposal number 34136, in collaboration with Dr. Aaron Stain and 

Jorge A. Boscoboinik.139 The versatility of the model encouraged the creation of a plan for 

providing public access to an organized repository of the code. The open-access repositories will 

promote further improvements and consolidation of teams that will benefit from the power of this 

resource in which the limitation experienced at the moment is the lack of human resources to 

analyze the amount of data that can be generated over time, which could easily surpass a single 

person’s capability of data manipulation and analysis. The teams could be focusing in different 

facets of the scaling of the project such as (a) design of projects, (b) management of data, (c) 

interpretation, (d) incorporation of machine learning, (e) implementing user friendly graphic 

interfaces, (f) scaling, etc. To give a sense of the power of the scaling in the improved simulation 

scheme, using resources such as OSG, the reproduction of years of initial calculations have taken 

approximately three days in spite of increased sampling (improved statistics), and added 

complexity in the calculation.  

A2.2 Monte Carlo Simulations Model 

The model proposed here is inspired by the experimental system of the formation of (PDI-Au)n 

oligomers on Au(111). However, it is applicable to directed self-assembly in general, allowing 

fundamental studies of a variety of experimental systems. To aid in describing this general model 

in a simple and clear way, restrictions have been imposed on the model that, to some extent, differ 

from the experimental system. Nevertheless, as it will be shown from the results, many of the 

features arising from the simulation do indeed mimic those seen experimentally. 
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Figure A2.1: Schematic diagram of a 40 × 40 triangular lattice with periodic boundary conditions for a coverage θ ≈ 

0.12 of monomeric units. The blue, green and yellow circles represent monomeric units aligned along the three lattice 

directions, as shown by the arrows. The gray circles are the empty sites in the lattice, and the red circles represent the 

fixed particles taking the role of nucleation sites. 

 

We use a lattice gas model, where the surface is represented by an array of N = L × L sites in a 

triangular lattice arrangement (see Figure A2.1), analogous to the arrangement of surface atoms 

on Au(111), where L is the linear size of the array. Periodic boundary conditions are imposed to 

represent an infinitely large system. Each site can be occupied by a monomeric unit of the 

molecular wire, where the monomeric unit is also given a value of an alignment parameter 

corresponding to one of the three surface directions, analogous to the (Au-PDI) monomeric unit. 

Note here the first difference between the simplified model and the experimental system. In the 

model, each monomeric unit occupies a single site in the triangular lattice while in the experimental 

case, each (Au-PDI) unit extends linearly, thus occupying four unit cells on the Au(111) surface.131 

The preferred lattice direction of the monomers in the model is described by attractive interaction 

energies in one of the three lattice directions, as given by the alignment parameter. The direction 
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of the interaction energy is shown by a double arrow in the representation of the monomeric units 

in Figure A2.1. As previously reported,140 under certain circumstances, this linear interaction can 

induce the self-alignment of the monomers into chains on the surface, similar to the experiment 

case, when the interaction energies are similar to those in the experimental system. It was seen for 

the (Au-PDI) system that low-coordination sites, such as step edges, dislocations, kinks or island 

edges on the surface can act as nucleation sites from which the molecular wires grow. It was also 

already suggested in the first experimental report of this system that this fact could be exploited 

by patterning the surface with defects (low-coordination sites) to act as nodal points for the self-

assembly of nano-architectures.131 There is already direct experimental evidence of this,139 and a 

conductivity study of a mica surface covered by gold nanoparticles shows that the latter are in 

electrical contact upon adsorption of PDI, as a result of the formation of (Au-PDI)n wires linking 

them.132 We further elaborate here on this idea by arbitrarily postulating an initial structure of the 

particles fixed in place on the triangular lattice. These particles play the role of nucleation sites for 

the growth of wires, and interact with the mobile monomeric units in any of the three lattice 

directions, analogous to what was observed for gold islands on the Au(111) surface. Figure A2.2 

shows an example of an experimental result, imaged by STM, in which gold islands connected by 

molecular wires are seen in the image. 
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Figure A2.2: STM image of (Au-PDI) wires on Au(111). Nodal points where the (Au-PDI)n wires originate from are 

emphasized by red circles. Imaging conditions: It = 206 pA, Vb = -2 V. At the top right corner a schematic 

representation of the simulated system is shown where the blue, green and brown circles represent directional 

monomeric units aligned along the three lattice directions, as shown by the double arrows. The white circles are the 

empty sites in the lattice and the red circles represent the fixed particles taking the role of nucleation sites. 

 

In the following, fixed, low-coordination growth nucleation sites will be referred to as “nodes” or 

“nodal points” or “nucleating sites”. As reported,140 the nodes have a remarkable influence on the 

resulting self-assembled structures. In our model, the interaction of nodal points with Au-PDI 

monomers is considered to be attractive and to occur only in the direction of the axis determined 

by an alignment parameter of the monomer, (see Figure A2.1-2). Then, the adsorbed phase, in the 

canonical ensemble (at a given coverage), is characterized by the following Hamiltonian: 

 

H = ⁡−w∑int{|r⃗ij ∙ s⃗j||r⃗ji ∙ s⃗i|(1 − ci)(1 − cj)}

〈i,j〉

− w∑[int{|r⃗ij ∙ s⃗j|(1 − cj)ci} + int{|r⃗ji ∙ s⃗i|(1 − ci)cj}]

〈i,j〉

⁡⁡⁡⁡(A2.1) 

 

Here, the sums are over pairs 〈i, j〉 of nearest-neighbor (NN) sites; the occupation of one site by the 

Au-PDI monomer is described by the vector s⃗i = {0, x⃗⃗k}, which takes the value “0” if the site is 

empty, and x⃗⃗k it is it occupied, giving as well the orientation of the monomer in one of the “k” 
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directions of the lattice; r⃗ij⁡is the vector connecting site “i” with site “j”; the node occupation 

variable is given by, ci = 0, 1, where ci takes the value “0” when the site does not have a nodal 

point; w represents the lateral interaction between two adsorbed monomers located in two NN sites 

or the lateral interaction between a monomer and a NN node. In this model the interaction between 

nodes is not considered. A study with a more general model including this and other interaction 

terms is in progress. Thus, the first term on the right-hand side of eq.(1) represents the contribution 

to the Hamiltonian corresponding to particles located at sites i⁡and j, which are nearest neighbors; 

sites may or may not be occupied by monomers which have orientations given by s⃗i and s⃗j; 

monomers contribute with energy w, if and only if both are oriented in the direction of the vector 

connecting the two sites r⃗ij or⁡r⃗⃗⃗ji; the final contribution is 0 or 1, due to the function “int”, which 

take the integer part of this factor. Finally, the factor (1 − ci)(1 − cj) avoids the presence of nodal 

points at both “i” and “j” sites. 

The second term represents the contribution to the Hamiltonian due to a monomer located at site j 

(i) and a nodal point located at site i (j). Note that, in the absence of nodes the model is the well-

known rigid-rod model, which has been extensively studied by others. For more details on the self-

assembled rigid rod model, see ref.[141] and references therein.  

 

Monte Carlo Method 

The thermodynamic properties of the present model have been investigated by means of a 

standard-importance-sampling Monte Carlo method in the canonical ensemble. As mentioned 

above, the simulation lattice is a triangular array of N = L × L sites with conventional periodic 

boundary conditions. Thermodynamic equilibrium is obtained by following the Kawasaki 

dynamic.142 As an initial configuration, a fixed number of nodes can be located at random or in a 
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regular array (in what follows, only regular arrays can be considered); then, a fixed number of 

adsorbed monomer units is distributed on the empty surface sites, to reach a predefined coverage 

θ, defined as the ratio between the number of adsorbed monomers and the total number of surface 

sites N). The location and orientation of the monomers are taken at random. Then the system is 

allowed to reorganize itself based on the following rules. First, one of two possible events, 

migration or rotation, is chosen at random. For a migration event, an occupied site and an empty 

site are selected randomly, establishing its coordinates; they are not necessarily NN sites. Then, 

the difference between the energies of the final and initial states, ΔE = Ef - Ei, is calculated; a 

random number ξ uniformly distributed in the interval (0 ≤ ξ ≤ 1) is chosen, and compared with a 

probability P = min [1, exp (- β ΔE)] where is β = 1 / kB T (kB is the Boltzmann constant); an 

exchange between the occupation of the sites is carried out if P > ξ, i.e.: if the probability P is 

larger than the random number ξ.  

For monomer rotation, the rotational state of the selected monomer is changed following the same 

procedure described above. A final rotation state is considered, and the energy of the monomer is 

calculated. Finally, the energy change between the initial and final rotated states is computed. The 

new rotated state is accepted after considering the comparison between a random number and the 

probability as described above. 

A Monte Carlo step (MCs) is defined as N = L × L attempts to change the state of occupation and 

rotation of a surface site. Typically, the equilibrium state is reached after 1 × 105 MCs, as will be 

shown later. In order to simplify the comparison of interaction energies, we will assume a 

temperature of 298 K. However, it should be noted that, given the ΔE/kBT term in the probability 

equation, when discussing changes in energy, this would be equivalent to inverse changes in 

temperature. Note that a dimensionless parameter could have been used instead to make the model 
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more general. In fact, this dimensionless parameter can still be obtained by multiplying the stated 

energies throughout the manuscript by kB*298 K if a more general term is needed. 

A2.2.1 Nearest-Neighbor Diffusion 

The self-assembly process in the model previously introduced has no restrictions on the position 

which a monomer can move, namely, monomers can go to any empty site on the surface in a single 

step, even “jumping” over occupied sites. This is equivalent to a case in which monomers can 

desorb and immediately re-adsorb at other empty site. From now on this regime will be referred to 

as “random diffusion”. These published results lead to equilibrium conditions that are 

thermodynamically stable, but they provide no insights into the kinetics of the phenomena, which 

does occur through on-surface diffusion for the experimental case study that originally inspired 

these simulations. We will consider next the mobile monomers that can only diffuse to nearest-

neighbor sites, since this could be a more realistic scenario. In addition to providing information 

on the kinetics of the process, the restriction to nearest-neighbor diffusion can also give useful 

information about kinetically trapped states that are not considered by the random diffusion model. 

At this point, we will add the nearest-neighbor diffusion while keeping all other parameters equal 

to those described in the previous section, whose results are included in more detail in a prior 

publication.140 We start by defining a lattice of 40 × 40 sites. To analyze the nano-scale self-

assembly of molecular wires directed by nodal points, an "elementary circuit unit" (ECU) is 

defined as a geometrical shape given by a regular arrangement of nodal points located at the 

vertices of such shape, i.e. for a triangular lattice, it can be a triangle or a square or rectangle for a 

square lattice, etc. That is an arbitrary definition, but it is necessary in order to derive the 

equilibrium properties of the system determined by the location of the nodal points. For example, 

a triangle in which the nodes are ten lattice units apart will be designated ECU10. Figure A2.1 
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shows an example of a 40 × 40 triangular lattice with ECU10 and monomers on the surface aligned 

along three different directions denoted by different colors and arrows. The gray circles represent 

empty sites and the red circles are the fixed particles that act as nucleation sites. 

Note that each full simulation includes a large number of simulated experiments, from whose 

totality statistics are extracted. The assembly probability PA is defined as the number of simulated 

experiments that result in the formation of an ECU, divided by the total number of simulated 

experiments for a given coverage. Here the coverage θ is defined as the total number of monomers 

plus nodal points divided by the total number of lattice sites.  

At this point, we emphasize the importance of large-scale, parallel computing platforms such as 

the open science grid (OSG) can greatly improve the efficiency of the calculation. After testing 

nearest-neighbor diffusion models, a number of systems with conditions similar to those published 

previously 140 were successfully executed using the OSG resources. Figure A2.3 shows example 

results of nearest-neighbor diffusion, where the assembly probability PA of an ECU4 is plotted as 

a function of time (in MC steps) for various coverages using a lattice with dimension L = 40. It 

can be seen in this plot that the system has already reached equilibrium after 105 MCSs. 
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Figure A2.3: Probability of assembly for an elementary circuit unit with nodal points 4 sites apart from each other at 

the center of a system of size L × L = 40 × 40 sites as a function of computational time (MCS), interaction energy      

w = 124 kJ/mol for various initial monomer coverages (θ) averaged over 1×107 results of independent parallel runs. 

This calculation was run on using Open Science Grid resources. In the legend, the coverages are listed as the number 

of monomers in excess of those required to form the elementary circuit unit. 

 

The use of large-scale, parallel computing resources such as the OSG is essential to run these 

calculations and it would not be possible to implement a project like this one in a timely fashion 

with any other resource. To illustrate the importance of parallelization, the analogous published 

calculations 140 (with simulations running sequentially rather than in parallel) would have taken at 

least one year. In section A2.2.5, we present an ongoing protocol to automate the submission and 

data collection (processing and transfer) for use in future projects. These results show that nearest-

neighbor diffusion significantly decreases the probability of assembly when compared to the case 

of random diffusion (illustrated here for interaction energies of w = 124 kJ/mol). When only 

nearest-neighbor diffusion is allowed, the system is often unable to access the thermodynamically 
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most stable state energy and becomes trapped in a local minima. This can occur, for example, 

when reaching this thermodynamically stable state requires monomers to jump over occupied 

states (possible for the random diffusion case, but not with only nearest-neighbor diffusion). This 

also results in a lower probability of assembly of the elementary circuit units. However, if w is 

reduced (either by a decrease in interaction energy or an increase in temperature), the system does 

reach states of organized longer-range structures. This, in turn, increases the probability of 

assembling elementary circuit units with nodal points up to 20 monomers apart. An example is 

shown in Figure A2.4, which shows a snapshot a calculation with w = 6 kJ/mol and L = 40. 

 

 

Figure A2.4: Snapshot of an assembled elementary circuit unit with nodal points 20 sites apart from each other at the 

center of a system of size L × L = 40 × 40 sites. The state was achieved at an interaction energy “𝒘” = 6 kJ/mol. The 

probability of forming this structure was virtually zero for any other 𝒘 values analyzed, which means that we might 

have, for nearest neighbor diffusion, different ideal conditions with regards to protocols for designing molecular 

architectures than the case of random diffusion. 

 

Some basic guiding principles have been obtained for modeling the self-assembly of an ECU. 

These are applicable to case of nearest-neighbors diffusion and are: 

i) when the exact number of monomeric units to form the ECU is present, the probability of 

actually assembling the ECU is virtually zero, 

ii) there is an optimum range of coverages where the probability of assembling the ECU is 

maximum, and  
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iii) the circuit probability of assembly decreases at high coverages, most likely due to “crowding” 

effects. 

The assembly of a “circuit”, defined as a network of ECUs, was previously discussed to introduce 

the proposed methodology for a simple case that make use of the already defined ECU without 

involving more complex architectures found in a conventional electronic circuit. The circuits were 

referred to as controlled electrical connections between two sides of a surface, representing two 

electrodes, for instance, making use of the self-assembly of molecular wires guided by an 

arrangement of nucleation sites (nodal points) on the surface. Results of these simulated networks 

of elementary circuit units are shown as the probability of assembly as a function of computational 

time and coverage in Figure A2.5 for a nodal distance of 5 monomers (calculation run using OSG 

resources). As previously mentioned, a more detailed analysis of these results is beyond the scope 

of this work and will be discussed elsewhere. 

Despite its simplicity, it is of great interest to analyze this process so we can define the fundamental 

concepts that will aid the design of complex self-assemblies in the future. For example, in work 

by Kestell and coworkers, it was shown that (Au-PDI)n chains, which connect islands of gold 

atoms on a mica substrate, are good electrical conductors.132 Furthermore, it was also shown that 

the (Au-PDI)n junctions could be switched off when they interact with certain molecules, such as 

CO. This has important implications for different applications, since the interconnecting of 

molecules can be considered as molecular "switches" that respond to chemical changes in the 

environment, such as the presence of a specific gas.143 These features are of particular interest from 

the practical point of view, as these switches could be used as very sensitive gas detectors. 
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Figure A2.5: Probability of circuit assembly as a function of computational time and coverage. Simulation of the 

formation of the network of triangles with a nodal distance of 5 monomers, system size L × L = 160 × 160, w = 124 

kJ/mol. 

 

 

A2.2.2 Introduction of Monomers Over Time (Dosage) 

An alternative strategy for the assembly of nano architectures, such as the elementary circuit units 

(ECUs) described before, is through the progressive dosing of the monomeric units. That is, the 

introduction of monomeric units happens progressively, allowing surface diffusion while the 

coverage is increasing. The Monte Carlo simulations allow the way this occur to be mimicked. In 

contrast with previous simulations, in this case, the lattice is initiated with only fixed nucleating 

sites. For the case of an ECU, three nucleating sites are present at the vertices of an equilateral 

triangle. In the case described here, a triangular lattice of size 60 × 60 with periodic boundary 
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conditions is utilized. First, we define the coverage of monomeric units to be introduced and the 

rate at which this changes. After each monomeric unit is added to the system, the previously 

adsorbed monomers are allowed to diffuse, rotate, or to remain unchanged. It is necessary to stress 

that the time is measured in Monte Carlo steps (MCS), where 1 MCS is defined as a number of 

event attempts equal to the number of sites on the lattice. Similar to previous calculations, the 

results are statistically averaged over independent simulated experiments (samples) carried out 

under the same conditions. This allows us to obtain the probability of assembly of a particular 

architecture. If each nucleation site is separated by, for instance, ten lattice units (ECU10), then at 

least 27 monomeric units are needed to form the full architecture. Generally, many more 

monomeric units than the minimum are required to achieve a significant probability of circuit 

assembly. The results from the simulations give the optimum coverage needed to maximize the 

probability of assembling the target nano-architecture as a function of dosing rate, the interaction 

between monomers and temperature, among other user-defined variables. 

In Figures A2.6 (a) and (b), the probability of assembly of the triangular ECU10 is shown as a 

function of time (MCS). This is displayed for two monomer dosing rates, namely at 1 MCS (a) 

and 100 MCS (b) intervals. The simulation was performed with an attractive interaction of 5 kBT 

between monomers, and 20 kBT between monomers and nucleation sites. For convenience, a 

dosage unit (DU) is defined as the number of introduced monomers equal to the length of a side 

of the ECU. It is observed that the time to form the ECU depends strongly on the dosage interval 

(rate). Other probabilities, such as the assembly of individual sides (complete or partial) of the 

ECU are also calculated, leading to the possibility of calculating a percentage of assembly of the 

ECU, as shown in Figure A2.7 for the case of ECU10. More detailed studies are planned by using 

the more advanced computational resources as described in section A2.2.5. 
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Figure A2.6: Probability of assembly of an entire triangular circuit with nodes being 10 sites apart, at different dosages 

for a system of L × L = 60 × 60 averaged results over 1000 samples vs time (in MCS). The dosage time interval is (a) 

1 MCS; (b) 100 MCS; with the same color, vertical line denotes when the dosage finish. 

 

 

 

 

 

Figure A2.7: Formation percentage of an entire triangular circuit with nodes being 10 sites apart, at different dosages 

for a system of L × L = 60 × 60 averaged results over 1000 samples vs time (in MCS). The dosage time interval is (a) 

1 MCS; (b) 100 MCS; with the same color, vertical line denotes when the dosage finish. 

 

A2.2.3 Chain Length Distribution 

Previous sections clearly show that an excess of monomers significantly above the minimum 

number required to make an ECU is needed to have a high probability of assembly of the ECU. 

This is because the monomers can initially nucleate to form structures along different directions, 

which are not necessarily those that lead to the formation of the desire architecture so that the 
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system must “correct” itself, as previously reported.140 The approach described here of using 

Monte Carlo simulations allows the study of any type of surface architecture, from ideal, arbitrarily 

defined systems to more complex ones generated from digitized images of experimental systems 

(as will be shown later). This allows the effect of different experimental conditions to be simulated, 

including the random introduction of mobile monomers at an initial time, or sequentially in time 

intervals to mimic monomer deposition flux, or other different dosing conditions. The mobile 

monomers can diffuse or, if they are directional, they can rotate, taking into account the lateral 

interaction they are subject to. In this manner, it is of importance to analyze the chain length 

statistics of the system, and how the growth conditions impact its distribution. The Monte Carlo 

simulations allow the statistical tracking of the evolution of the system, as shown in Figures A2.8 

and A2.9. There, the chain length distribution is plotted as a function of computational time. In 

this simulated experiment, the system evolves, decreasing the number of individual monomers, 

and increasing chain length as the self-assembly progresses. This information can be utilized to 

determine the dynamics of chain formation and analyze the equilibrium conditions, including the 

average length of chains, and potentially promote bridging between contacts or nanoparticles. The 

latter has been successfully implemented in recent work.138,139 The data of Figure A2.8 were 

obtained in a 60×60 triangular lattice, but larger systems will benefit from better computational 

power.  

The versatility of the Monte Carlo simulations allows the analysis of the introduction of nucleation 

sites at random locations on the lattice, and the study of the impact of the spatial distribution of 

nucleation sites on the chain length distribution. As in the case of dosage, this analysis requires 

significant computational resources due to the large number of variables and parameters involved 

even in this relatively simple model.  
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Figure A2.8: Chain length distribution plot as a function of computational time, allowing statistical tracking of the 

evolution of the system after the random introduction of individual monomers. At the conditions used here, the system 

evolves to promote self-assembly, decreasing the number of isolated monomers and increasing the size of the chains 

with time. This improvement can be utilized to see at equilibrium condition what is the average length of chains 

existing in the system, and potentially promoting bridging between contacts (or nanoparticles). 

 

 

Figure A2.9: Close up view of the first 1000 MCS of Fig. A2.8. The chain length distribution is used here to study 

the dynamics of the chain growth.   
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A2.2.4 Information from Real Systems 

In collaboration with Dr. Dustin Olson, we prepared devices consisting of gold contacts separated 

by a few nanometers using electron-beam nanolithography at the Center for Functional 

Nanomaterials (CFN) at Brookhaven National Laboratory (under CFN proposal number 34136, 

with assistance from Staff Scientist Aaron Stein and in collaboration Anibal Boscoboinik). These 

experiments were aimed at studying electronic transport by bridging molecular wires between the 

gold contacts. After fabrication of the devices, Monte Carlo calculations were carried out in 

collaboration with Dr. Dustin Olson to reproduce the experimental current-versus-voltage (I/ V) 

curves. Scanning electron microscopy (SEM) images were provided to identify the distribution of 

nucleation sites, see Fig. A2.10 (a). By selecting an area of the device, Fig. A2.10 (b), in which 

the nanoparticle distribution can be captured, the image was transformed into a pixel map (each 

pixel was rescaled to be equivalent to the size of a monomer site in the calculation). By having this 

proportionality, an image processing software was used to differentiate the contrast of the areas 

with nanoparticles, as shown in Fig. A2.10 (c). Finally, the pixel coordinates of the nucleating sites 

were exported and incorporated in the calculations, Fig. A2.10 (d). A snapshot of a test calculation 

running in a digitized system is shown in Figure A2.11. 

 

 
Figure A2.10: Image analysis of real systems for creating a library of particles to input in the calculation. (a) and (b) 

Scanning electron microscopy images of experimental gold nanoparticle distribution courtesy of Dr. Dustin Olson. (c) 

image analysis for extracting pixel coordinates of nucleating sites. (d) digitized system. 
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Figure A2.11: Example of a snapshot of a calculation running on a digitized experimental system. Blue, gold and 

green particles represent directional mobile monomers and red particles are digitized nucleating gold nanoparticles, 

empty sites are shown in black. 

 

In order to reproduce the experimental IV curves, an improved percolation algorithm was 

developed. The algorithm consists of a directional search of connected particles (monomers or 

nucleation sites), rastering from one side of the lattice to the opposite, as depicted in Figure A2.12 

top. All connected particles were then computed in a separate matrix in which the coordinates are 

defined (blue particles in Figure A2.12), and all other particles that do not form part of the 

percolation paths are also identified from connected and empty sites (red particles). Finally, the 

percolation matrix can be exported as a function of computational time to get an image 

representation of the percolation process. Statistics are also obtained for the connected sites 

percolating from one side to the opposite of the lattice. By tracking the number of connected sites 

over computational time, a simulated IV curve can be obtained. This percolation algorithm has 

been already utilized to analyze bridging between particles in a recently published paper.138  
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Figure A2.12: Top, a schematic diagram of the percolation algorithm search. Bottom, two Snapshots at two different 

times of a system to show a graphic representation of results from the improved percolation algorithm. Here, connected 

(blue) and non-connected structures (red) are showing the percolation from left to right in a system with top and 

bottom periodic boundary conditions. 

 

A further improvement is the possibility of being able to control the size of hexagonal 

nanoparticles to form an ideal distribution, as shown in Figure A2.13 top, were a schematic 

representation is depicted of hexagonal nanoparticles increasing in size from top to bottom. It has 

been shown that the presence of nucleation sites contributes to the system reaching thermodynamic 

equilibrium significantly faster.140 Figure A2.13 bottom shows that the size of the nucleating 

islands (nanoparticles) also has a substantial impact on the structure of final self-assembled 

nanoarchitectures. The study of these ideal distributions of hexagonal nanoparticles has been 

utilized to confirm that (PDI-Au)n oligomeric chains are capable of bridging gaps up to ~9 nm,138 

and it has been experimentally proven that oligomers can bridge ~5 nm gaps,139 which is not very 

different from the predicted value of ~22 nm previously reported 140 using optimal conditions under 

thermodynamic equilibrium and single-particle nucleating island.  

  



www.manaraa.com

 

113 

 

 

 

 

Figure A2.13: Ideal nanoparticle distribution with controlled sizes for studying, for instance, impact in guiding power 

of self-assembled nanoarchitectures. Top, representation of different hexagonal nanoparticle sizes from single particle 

to 7 lattice units maximum width. Bottom, impact on guiding power of hexagonal nanoparticle size for a system of 80 

× 80 sites with 64 nanoparticles, occupying a single site (left) and seven lattice units max width (right). Interaction 

energy, w = 124 kJ/mol. 

 

A2.2.5 Scaling Using OSG resources 

In order to use the previously developed Monte Carlo code in the OSG platform, it was adapted to 

run on the Linux operating systems. The performance was also improved with respect to the 

original Windows version. Figure A2.14 shows that the execution time was halved for equivalent 

test conditions, using similar hardware. Linux data points are shown in white and Windows results 

in green for a system with a lattice size of 80×80 with 2000 more monomers than the minimum 

amount needed to produce a network of ECUs with a nodal distance of 5 monomers (the y axis in 

this figure is probability of assembly of the entire architecture). The same calculation that took 14 

minutes to run on Windows, took only 7 minutes to run on Linux. Snapshots of the system under 
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examination, taken at the termination point, are shown as the background of the curves. An 

additional improvement to the code was that the random number generator was substituted to use 

parameters relative to the execution node in which it will run, which allows the calculations to be 

executed in parallel, ensuring variability of the needed random numbers. A significant update to 

the code involves the creation of backup files for checkpointing. This allows long calculations to 

be run exceeding the run-time limitations of the cluster, and resume the calculations in case of 

other unexpected interruptions. An example of these updates is shown in Figure A2.15. Here, a 

calculation creates a backup at 30000 MCS. It is then stopped and re-submitted from that point. 

Despite the intrinsic statistical variability of being a single average, the calculation continues to 

operate, demonstrating successful checkpointing. Current work is being carried out to build a 

management protocol to automate the creation, submission, execution, data retrieval, etc. 

  

Figure A2.14: Comparison of the same calculation run Windows and Linux Operative System (OS). The time needed 

for different coverage conditions is shown. For the case in which the coverage is such that there coverage of 2000 

monomer above those required to from the network of ECU5 (80 × 80 sites system dimensions), the same program 

takes 7 minutes to run on Linux and 14 minutes on Windows. Snapshots of the systems after included as background 

for illustrating the three different coverages in monomers referenced to the minimum number to needed to form the 

network of ECU5 (+2000, +600, -2000). The case of -2000 reflects a total number of monomers below that needed to 

form the network of ECUs. 
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Figure A2.15: Checkpointing test for scaling at OSG. The calculation backup was saved at 30 kMCS (blue line) and 

successfully executed when resubmitted (black). Differences with original nonstop calculation (green) are related to 

the seed on the random number generated, and it is statistically correct to observe this slight variation. Calculation 

conditions for this test were: System size L × L = 80 × 80 sites and 3328 monomers to form the circuit of array 

elementary circuit units. Node separation 5 sites. 
 

The Open Science Grid (OSG) planned workflow is described in Figure A2.16. Here, the use of 

Directed Acyclic Graph manager (DAGman) 137 is proposed to manage the modular organization 

of the workflow. The objective is to automatically submit jobs in a particular order and automating 

the calculation setup and data processing. In this way, a single generic master file (denoted as  

“*.cpp” in the diagram) is then subject to a sequence of scripts. The first produces a tree of properly 

organized calculations with parameters listed in a “parameter file”. A second script acting on these 

calculations manages the submission from the “submit node” to the “execution node”, where the 

calculations run. A backup file is periodically generated, and partial results are transferred back to 

control the evolution of the calculation. Each time a calculation is successfully terminated, the 

final result is retrieved and averaged with the previous ones. This is repeated until all calculations 

have terminated. The final results are now ready for analysis. The DAGman works by modifying 

the master calculation to submit, in parallel, as many averages as desired. This automation will 
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significantly reduce the workload and assist with data processing. To manage parallel analogous 

workflows while testing other architectures (for example, distributions of nucleating sites), 

SPLICE 137 can be used. A splice could be used to designate different architectures, which will 

then be managed by following the DAG management protocol described previously. The latter is 

extremely powerful and by having, for instance, different distribution of nucleating particles 

defined in the different parameter files, as many conditions as desired could be studied. The revised 

code can now work in Linux, run on OSG, do parallel execution, run scripts for automated job 

submission averaging results, and do checkpointing. We are now ready to generate the 

management protocols using DAGman and SPLICE DAGman. The final step will be the release 

of the final code in a repository from where it will be possible to set the conditions and introduce 

the nodal coordinates. In the longer term, we envision the possibility of the user describing a “target 

self-assembled nano-architecture” and then running the code to obtain the optimum conditions 

needed to experimentally achieve such nano-architecture. A further improvement is not to only 

limit the simulations to surfaces, but to also expand the code to predict the self-assembly of three-

dimensional nano-architectures. 
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Figure A2.16: General representation of workflow diagram for executing self-assembly calculations at the OSG. 

Directed Acyclic Graph Manager (DAGman) is used to manage and automate the regular protocol used in this 

calculations, generate a tree of calculations for each model “*.cpp” to create and organize a variety of 

parameters/arguments to be tested “tree of calculations” compile them, submit them, report regularly partial results 

and perform checkpointing to resume calculations if necessary. Finally, report final results and clean unnecessary 

files.  

 

 

A2.4 Applications and Future Studies 

Current applications of the Monte Carlo simulations described here are the study of the optimum 

conditions for designing molecular self-assembled architectures 138,140 and perhaps analyzing the 

reasons for the failure of already designed devices. Hence, a straightforward adaptation of this 

model makes it versatile to think that there is no limitation to modify it to also work for repulsively 

interacting particles in two dimensions. However, once the protocol described in Figure A2.14 

becomes fully operational, we expect to include a third dimension to contemplate systems such as 

solids, liquids, gases and interfaces. Finally, by creating open-source repositories with free access, 

it should be possible to decentralize the power of these calculations and allow the scientific 

community to contribute to the generalization of applicability of these calculations. 
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A2.5 Conclusions 

The self-assembly of molecular wires, guided by the presence of nucleation units fixed on the 

surface, was simulated using Monte Carlo methods in the framework of the lattice-gas model. This 

work is inspired by and compared to experimental data for the self-assembly of Au-PDI units on 

a Au(111) substrate into long (Au-PDI)n oligomeric metal-organic wires. The experimental 

observation that nanowires are anchored to low-coordination sites (such as surface dislocations, 

elbows of the herring-bone reconstruction, and edges of gold islands) is represented in the 

simulations by postulating fixed nucleation units on a triangular lattice at arbitrary locations, and 

by defining attractive interactions between the mobile monomeric units. In order to facilitate the 

quantitative measurement of the self-assembly process, three nucleation sites at a distance m unit 

cells apart were located on the surface to form an equilateral triangle (which is called an 

“elementary circuit unit” (ECUm)). A successful ECU is formed when wires self-assemble to 

connect these three nucleation sites. The probability of formation of the ECUm was then explored 

as a function of various parameters including the coverage of monomeric units, the distance m 

between nucleation sites, the number of Monte Carlo steps, and the interaction energies.  

Advances in the simulation methods and scripts were also discussed that enabled the scaling and 

substantial expansion of the applicability of the model. A workflow scheme for the implementation 

of these advances is described. These calculations have important implications for the future 

design of guided, self-assembled molecular-electronic structures, since it allows the optimum 

values for a variety of design factors to be determined. These factors include the range of coverages 

of monomeric units that need to be deposited on the surface to ensure electrical continuity and 

temperature at which the self-assembly process should occur. Finally, the dissemination of the 
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project and the creation of an open access to the source code is proposed as the final goal in this 

road map.  
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Concluding remarks 

While forces are present all around (and inside) us, the fundamental understanding of how they 

affect the rates of chemical change is very limited. Additionally, there is a lack of awareness about 

the importance of mechanochemical effects, which is partly related to the scant attention that is 

devoted to the topic in introductory chemistry textbooks and courses. However, the paucity of 

information in textbooks could be just traced back to the lack of fundamental knowledge within 

this field. This work represents a step forward towards remediating some of that gap in knowledge. 

In the work described in this thesis, the influence of forces on chemical reaction rates was studied 

at the nanoscale. Using well-defined model systems, we explored the underlying mechanochemical 

interactions using an atomic force microscope tip to apply a force on a surface covered with methyl 

thiolates. We analyzed the reaction kinetics of its decomposition under the effect of normal stress. 

The results are in good agreement with quasi-static first-principles quantum calculations. The 

thermal activation barrier is obtained by extrapolating the results as the forces tends to zero, and 

the resulting measured activation barrier is in good agreement with previous studies. Moreover, it 

is found that change in activation energy as a function of applied stress, scales linearly with the 

stress-dependent heat of reaction. This suggests that it should be possible to calculate 

mechanochemical reaction rates by using Evans-Polanyi relations.  

Sliding experiments were performed to analyze the influence of the lateral force on the chemical 

reaction where the imposition of a lateral force results in an increase in the reaction rate. The 

maximum effect of the shear stress is observed when the lateral force vector is colinear with the 

minimum energy pathway for diffusion, suggesting that surface diffusion of the adsorbed species 

plays an important role. The activation volume for the shear-induced process is significant, and it 
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can be compared to shear activation volumes discussed in the literature for fatty acids in studies 

on boundary friction.4  

In order to investigate alternative methods of applying forces and accelerating the rates of chemical 

reactions, the trapping of noble gases in a nanoporous 2D-aluminosilicate on Ru(0001) was 

investigated. While useful for fundamental studies, the synthesis of these 2D-aluminosilicates is 

prohibitively expensive and the amount produced very small for potential practical applications. 

Taking this into consideration, an alternative synthesis protocol by delamination of a bulk layered 

material was explored. These aluminosilicates are intended to serve as a playground for studying 

chemistry in confined spaces, but they can also have important energy applications, including their 

use in nuclear reactors.  

Furthermore, intermolecular forces can promote restructuring on surfaces, and structural changes 

as a function of coverage and temperature are analyzed for the case of furfural on Pd(111) using 

infrared reflection absorption spectroscopy. Furfural is a precursor for obtaining more valuable 

feedstocks, and there is the need for developing catalysts for its chemical conversion with lower 

toxicity than the ones used at the moment. The results show important restructuring of adsorbed 

multilayers before chemical reactivity is evident. These conformational changes suggest that 

furfural crystallizes into a phase favoring the cis conformer. This resulting crystalline phase may 

be related to a long-range hydrogen-bonded network of molecules. The latter will be of interest for 

studying the influence of furfural molecular ordering in greater detail and providing evidence of 

temperatures in which chemistry starts to occur on Pd(111).  

Finally, a Monte Carlo approach to simulating the self-assembly of nanowires is presented. This 

approach was later expanded and applied to an experimental system in collaboration with Dr. 

Dustin Olson (additional work included in his Ph.D. thesis).  
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